Mechanical and ballistic characterization of high-density polyethylene composites reinforced with alumina and silicon carbide particles

Authors

  • Bruno Figueira de Abreu Ferreira CARDOSO Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.
  • Flávio James Humberto Tommasini Vieira RAMOS Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Avenida Horácio Macedo, 2030 – Centro de Tecnologia, Bloco J, Ilha do Fundão, 21941-598, Rio de Janeiro, RJ, Brazil.
  • Pedro Henrique Poubel Mendonça da SILVEIRA Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.
  • Anthony Garotinho Barros Assed Matheus de OLIVEIRA Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.
  • André Ben-Hur da Silva FIGUEIREDO Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.
  • Alaelson Vieira GOMES Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.
  • Valdir Florêncio da VEIGA-JUNIOR Military Institute of Engineering - IME, Praça General Tibúrcio, 80, Praia Vermelha, Urca, 22290-270, Rio de Janeiro, RJ, Brazil.

DOI:

https://doi.org/10.55713/jmmm.v32i2.1262

Keywords:

Ballistic resistance, Mechanical properties, DOP, HDPE, Alumina

Abstract

This article explores the ballistic and mechanical performance of HDPE matrix composites reinforced with alumina and silicon carbide particles, to be used as lightweight body armor. After processing, the composites were evaluated by tensile tests, Izod impact, and Shore D hardness. In addition, depth of penetration (DOP) and energy absorption tests were performed with chronograph simulating .22 ammunition in the ballistic test. Samples A80 and A70 had the lowest DOP result (15.98 and 17.98 mm respectively) indicating that these samples had the best ballistic performance. Mechanical tests performed on samples A00, A40, A50, and A60 showed that the deformation and tensile strength were reduced with the addition of ceramic reinforcement. Impact resistance also decreased. Shore D hardness showed a considerable increase in hardness of A40, A50, and A60 compared to A00.

Downloads

Download data is not yet available.

References

T. L. Castro-Espicalsky, S. T. Costa, B. M. Santiago, A. R. Freire, E. Daruge Júnior, F. B. Prado, and A. C. Rossi, “Craniofacial injuries by firearms projectiles: an analysis of 868 deaths in the five regions of Brazil,” Journal of Forensic and Legal Medicine, vol. 69, 101888, 2020.

N. Rancic, M. Erceg, N. Radojevic, and S. Savic, “Medicolegal characteristics of firearm homicides in belgrade, serbia: before, during, and after the war in the former Yugoslavia,” Journal of Forensic Sciences, vol. 58, pp. 1549–1553, 2013.

A. Amori, H. Sanaei-Zadeh, H.T. Zavarei, F. R. Ardestani, and N. Savoji, “Firearm fatalities. A preliminary study report from Iran,” Journal of Clinical Forensic Medicine, vol. 10, pp. 159–163, 2003.

P. K. Stefanopoulos, O. T. Soupiou, V. C. Pazarakiotis, and K. Pazarakiotis, “Wound ballistics of firearm-related injuries - Part 2: Mechanisms of skeletal injury and characteristics of maxillofacial ballistic trauma,” International Journal of Oral and Maxillofacial Surgery, vol. 44, pp. 67-78, 2015.

M. Justus, D. Hemenway, and M. Miller, “The relationship between alcohol consumption and the desire to own a firearm: an empirical study on citizens of São Paulo City, Brazil,” Public Health, vol. 179, pp. 186–194, 2020.

A. B. Dresch, J. Venturini, S. Arcaro, O. R. K. Montedo, and C. P. Bergmann, “Ballistic ceramics and analysis of their mechanical properties for armour applications: A review,” Ceramics International, vol. 47, pp. 8743-8761, 2021.

D. B. Rahbek, J. W. Simons, B. B. Johnsen, T. Kobayashi, and D. A. Shockey, “Effect of composite covering on ballistic fracture damage development in ceramic plates,” International Journal of Impact Engineering, vol. 99, pp. 58-68, 2017.

P. H. P. M. Silveira, T. T. Silva, M. P. Ribeiro, P. R. R. Jesus, P. C. R. S. Credmann, and A. V. Gomes, “A Brief Review of Alumina, Silicon Carbide and Boron Carbide Ceramic Materials for Ballistic Applications,” Academia Letters, Article 3742, 2021.

M. P. Ribeiro, L. M. Neuba, P. H. P. M. Silveira, F. S. Luz, A. B. S. Figueiredo, S. N. Monteiro, and M. O. Moreira, “Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric,” Journal of Materials Research and Technology, vol. 12, pp. 221-233, 2021.

T. T. Silva, P. H. P. M. Silveira, M. P. Ribeiro, M. F. Lemos, A. P. Silva, S. N. Monteiro, and L. F. C. Nascimento, “Thermal and chemical characterization of kenaf fiber (hibiscus cannabinus) reinforced epoxy matrix composites,” Polymers, vol. 13, 2016.

L. M. Neuba, R. F. P. Junio, M. P. Ribeiro, A. T. Souza, E. S. Lima, F. C. Garcia Filho, A. B. S. Figueiredo, F. O. Braga, A. R. G. Azevedo, and S. N. Monteiro, “Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with cyperus malaccensis sedge fiber,” Polymers, vol. 12, 2020.

S. Naik, R. D. Dandagwhal, and P. K. Loharkar, “A review on various aspects of Kevlar composites used in ballistic applications,” Materials Today: Proceedings, vol. 21, pp. 1366-1374, 2020.

J. L. Santos, R. L. S. B. Marçal, P. R. R. Jesus, A. V. Gomes, E. P. Lima, D. N. Rocha, M. A. P. Santos, L. F. C. Nascimento, S. N, Monteiro, and L. H. L. Louro, “Mechanical properties and ballistic behavior of LiF-added Al2O3–4 wt%Nb2O5 ceramics,” Journal of Materials Research and Technology, vol. 7, pp. 592-597, 2018.

P. H. P. M. Silveira, P. R. R. Jesus, M. P. R. Ribeiro, S. N. Monteiro, J. C. Oliveira, and A. V. Gomes, “Sintering behavior of AL2O3 ceramics doped with pre-sintered NB2O5 and LiF,” Materials Science Forum, vol. 1012, pp. 190-195, 2020.

S. N. Monteiro, A. C. Pereira, C. L. Ferreiro, E. P. Júnior, R. P. Weber, and F. S. Assis, “Performance of plain woven jute fabric-reinforced polyester matrix composite in multilayered ballistic system,” Polymers, vol. 10, pp. 230-239, 2018.

T. Goode, G. Shoemaker, S. Schultz, K. Peters, and M. Pankow, “Soft body armor time-dependent back face deformation (BFD) with ballistics gel backing,” Composite Structures, vol. 220, pp. 687-698, 2019.

M. Bajya, A. Majumdar, B. S. Butola, S. K. Verma, and D. Bhattacharjee, “Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid,” Composites Part B: Engineering, vol. 183, pp. 107721-107730, 2020.

R. E. Smallman, and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering. Butterworth-Heinemann., 4th ed, 1999.

S. Hayun, V. Paris, R. Mitrani, S. Kalabukhov, M. P. Dariel, E. Zaretsky, and N. Frage, “Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS),” Ceramics International, vol. 38, pp. 6335-6340, 2012.

L. Zheng, W. Wei, X. Dong, C. Zhang, Y. Zeng, and H. Huan, “Microscopic wear study of the sintered diamond trepanning drill during machining alumina armor ceramics,” Ceramics International, vol. 45, pp. 3986-3994, 2019.

S. M. Naga, H. F. El-Maghraby, M. Elgamhoudy, and M. A. Saleh, “Characterization and origin of failure of SiC/ZTA composites,” International Journal of Refractory Metals and Hard Materials, vol. 73, pp. 53–57, 2018.

J. Chai, Y. Zhu, Z. Wang, Shen T, Y. Liu, L. Niu, S. Li, C. Yao, M. Cui, and C. Liu, “Microstructure and mechanical properties of SPS sintered Al2O3-ZrO2 (3Y) – SiC ceramic composites,” Materials Science and Engineering: A, vol. 781, Article 139197, 2020.

A. B. S. Figueiredo, E. P. Lima-Júnior, A. V. Gomes, G. B. M. Melo, S. N. Monteiro, and R. S. de Biasi, “Response to Ballistic Impact of Alumina-UHMWPE Composites.” Materials Research, vol. 21, pp. 1-5, 2018.

F. J. Galindo-Rosales, F. J. Rubio-Hernández, and A. Sevilla, “An apparent viscosity function for shear thickening fluids,” Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp. 321-325, 2011.

J. Ding, P. J. Tracey, W. Li, G. Peng, P. G. Whitten, and G. G. Wallace, “Review on shear thickening fluids and applications,” Textiles and Light Industrial Science and Technology, vol. 2, pp. 161-173, 2013.

D. Deepak, N. Goyal, P. Rana, and V. Gupta, “Effect of varying reinforcement content on the mechanical properties of hemp-recycled HDPE composites,” Materials Today: Proceedings, vol. 18, pp. 5286-5291, 2019.

C. Y. Chee, N. L. Song, L. C. Abdullah, T. S. Y. Choong, and T. R. Chantara, “Characterization of mechanical properties: low-density polyethylene nanocomposite using nanoalumina particle as filler,” Journal of Nanomaterials, vol. 10, pp. 1155-1160, 2012.

Z. Liao, M. Hossain, and X. Yao, “Ecoflex polymer of different Shore hardnesses: Experimental investigations and constitutive modelling,” Mechanics of Materials, vol. 144, Article 103366, 2020.

F. M. B. Coutinho, I. L. Mello, and L. C. Santa Maria, “Polyethylene: main types, properties and applications,” Polymers, vol. 13, pp. 1-13, 2003.

C. Kaufmann, D. Cronin, M. Worswick, G. Pageau, and A. Beth, “Influence of material properties on the ballistic performance of ceramics for personal body armour,” Shock and Vibration, vol. 10, pp. 51-58, 2003.

M. A. Khan, Y. Wang, G. Yasin, A. Malik, F. Nazeer, W. Q. Khan, H. Zhang, and T. Ahmed. “Microstructure characteristic of spray formed 7055 Al alloy subjected to ballistic impact by two different steel core projectiles impact,” Journal of Materials Research and Technology, vol. 8, pp. 6177-6190, 2019.

M. J. Oliveira, A. V. Gomes, A. R. Pimenta, and A. B. S. Figueiredo, “Alumina and low density polyethylene composite for ballistics applications,” Journal of Materials Research and Technology, vol. 14, pp. 1791-1799, 2021.

ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2014.

ASTM D256-10, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, 2018.

B. Jayendra, D. Sumanth, G. Dinesh, and M. R. Venkateswara, “Mechanical characterization of stir cast Al-7075/B4C/graphite reinforced hybrid metal matrix composites,” Materials Today: Proceedings, vol. 21, pp. 1104–1110, 2020.

C. Y. Chee, N. L. Song, L. C. Abdullah, T. Choong, and T. R. Chantara, “Characterization of mechanical properties: low-density polyethylene nanocomposite using nanoalumina particle as filler,” Journal of Nanomaterials, vol. 10, Article 215978, 2012.

ASTM D2240-15, Standard Test Method for Rubber Property—Durometer Hardness, ASTM International, West Conshohocken, PA, 2015.

S. A. B. Lins, M. C. G. Rocha, and J. R. M. D’Almeida, “Mechanical and thermal properties of high-density polyethylene/alumina/glass fiber hybrid composites,” Journal of Thermoplastic Composite Materials, vol. 32, pp. 1566-1581, 2018.

A. Goulas, J. R. McGhee, T. Whittaker, D. Ossai, E. Mistry, W. Whittow, B. Vaidhyanathan, I. A. Reaney, J. C. Vardaxoglou and D. S. Engstrom, “Synthesis and dielectric characterization of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing,” Additive Manufacturing, vol. 55, pp. 102844, 2022.

W. Wang, X. Bai, L. Zhang, S. Jang, C. Shen, and R. He, “Additive manufacturing of CsF/SiC composites with high fiber content by direct ink writing and liquid silicon infiltration,” Ceramics International, vol. 48, pp. 3895-3903, 2022.

A. R. M. Vijay, C. T. Ratnam, M. Khalid, S. Appadu, and T. C. S. M. Gupta, “Effect of radiation on the mechanical, morphological and thermal properties of HDPE/rPTFE blends,” Radiation Physics and Chemistry, vol. 177, pp. 109190-109200, 2020.

N. Kaya, E. Atan, and M. Sütçü, “Investigation of thermal properties of waste Tungsten Carbide (WC) loaded HDPE Matrix,” Materials Today Communications, vol 25, pp. 101547-101554, 2020.

F. S. Ortega, V. C. Pandolfelli, J. A. Rodrigues, and D. P. F. Souza, “Aspects of rheology and stability of ceramic suspensions. part iii: electro-stabilization mechanism for alumina suspensions” Cerâmica, vol. 43, pp. 281-282, 1997.

M. J. Oliveira, A. V. Gomes, and A. R. Pimenta, “Compósito de alumina e polietileno de baixa densidade, uma alternativa de aplicação em proteção balística”, Revista Militar de Ciência e Tecnologia, vol. 38, pp. 61-67, 2021.

K. R. Dinesh, and G. Hatti, “Study of the effect of TiO2, CaCO3 and Al2O3 on mechanical properties of LDPE polymer composites fabricated by injection moulding technique,” Material Science Research India, vol. 15, pp. 159-164, 2018.

I. Krásný, L. Lapčík, B. Lapčíková, R. W. Greenwood, K. Šafářová, and N. A. Rowson, “The effect of low temperature air plasma treatment on physicochemical properties of kaolinite/polyethylene composites,” Composites Part B: Engineering, vol. 59, pp. 293-299, 2014.

K. Grison, T. C. Turella, L. C. Scienza, A. J. Zattera, “Evaluation of the mechanical and morphological properties of HDPE composites with powdered Pinus taeda and calcined alumina,” Polímeros, vol. 25, pp. 408-413, 2015.

L. J. Silva, T. H. Panzera, V. R. Velloso, A. L. Christoforo, “Hybrid polymeric composites reinforced with sisal fibers and silica microparticles,” Composites Part B: Engineering, vol. 43, pp. 3436-3444, 2012.

O. Faruk, and L. M. Matuana, “Nanoclay reinforced HDPE as a matrix for wood-plastic composites,” Composites Science and Technology, vol. 68, pp. 2073-2077, 2008.

C. F. Martins, M. A. Irfan, and V. Prakash, “Dynamic fracture of linear medium density polyethylene under impact loading conditions,” Materials Science and Engineering: A, vol. 465, pp. 211-222, 2007.

S. Alavitabari, M. Mohamadi, A. Javadi, and H. Garmabi, “The effect of secondary nanofiller on mechanical properties and formulation optimization of HDPE/nanoclay/nanoCaCO3 hybrid nanocomposites using response surface methodology,” Journal of Vinyl and Additive Technology, vol. 27, pp. 54-67, 2021.

F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: formation, detection, autonomic repair,” Progress in Materials Science, vol. 83, pp. 536-573, 2016.

J. C. Caraschi, and A. L. Leão, “Evaluation of the mechanical properties of recycled plastics from solid urban waste,” Acta Scientiarum Maringá, vol. 24, pp. 1599-1602, 2002.

A. Koffi, D. Koffi, and L. Toubal, “Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites,” Polymer Testing, vol. 93, Article 106956, 2020.

A. B. S. Figueiredo, H. C. Vital, R. P. Weber, E. P. Lima-Júnior, J. G. P. Rodrigues, L. S. Aguilera, and R. S. de Biasi, “Ballistic tests of alumina-UHMWPE composites submitted to gamma radiation,” Materials Research, vol. 22, pp. 1-7, 2019.

M. E. Mahmoud, M. A. Khalifa, R. M. El-Sharkawy, and M. R. Youssef, “Effects of Al2O3 and BaO nano-additives on mechanical characteristics of high-density polyethylene,” Materials Chemistry and Physics, vol. 262, Article 124251, 2021.

N. P. S. Chagas, V. O. Aguiar, F. C. G. Filho, A. B. H. S. Figueiredo, S. N. Monteiro, N. R. C. Huaman, and M. F. V. Marques, “Ballistic performance of boron carbide nanoparticles reinforced ultra-high molecular weight polyethylene (UHMWPE),” Journal of Materials Research and Technology, vol. 17, pp. 1799-1811, 2022.

M. Fejdyś, A. K. Jastrząbek, and K. Kośla, “Effect of Accelerated Ageing on the Ballistic Resistance of Hybrid Composite Armour with Advanced Ceramics and UHMWPE Fibres,” FIBRES & TEXTILES in Eastern Europe, vol. 28, pp. 71-80, 2020.

Downloads

Published

2022-06-30

How to Cite

[1]
B. F. de A. F. CARDOSO, “Mechanical and ballistic characterization of high-density polyethylene composites reinforced with alumina and silicon carbide particles”, J Met Mater Miner, vol. 32, no. 2, pp. 42–49, Jun. 2022.

Issue

Section

Original Research Articles