Hole transport layers in organic solar cells: A review

Authors

  • Riva ALKARSIFI Aix Marseille Univ, CNRS, CINaM, Marseille, France.
  • Jörg ACKERMANN CINaM – Centre Interdisciplinaire de Nanoscience de Marseille, France.
  • Olivier MARGEAT CNRS – Centre National de la Recherche Scientifique, France.

DOI:

https://doi.org/10.55713/jmmm.v32i4.1549

Keywords:

Organic solar cell, interfaces, hole transporting layer

Abstract

Thanks to huge research efforts, organic solar cells have become serious candidates in the field of renewable energy sources, with reported power conversion efficiencies above 19% and operating lifetime surpassing decades. In the thin film stack composing the organic solar cell, the transport layers at interfaces play a key role, as important as the photoactive material itself. Both electron (ETL) and hole (HTL) transport layers are indeed directly involved in the efficiency and stability of the devices, due to the very specific properties required for these interfaces. Focusing on the HTL interface, a large number of materials has been used in organic solar cells, such as 2D materials, conductive polymers or transition metal oxides. In this review, we present the evolution and recent advances in HTL materials that have been employed in manufacturing organic solar cells, by describing their properties and deposition processes, and also relating their use with the fullerene or the new non-fullerene acceptors in the active layer.

Downloads

Download data is not yet available.

References

H. Kim, S. Nam, J. Jeong, S. Lee, J. Seo, H. Han, and Y. Kim, “Organic solar cells based on conjugated polymers : History and recent advances” Korean Journal of Chemical Engineering, vol. 31, no. 7, pp. 1095-1104, 2014.

M. Grätzel, “Photoelectrochemical cells” Nature, vol. 414, no. 6861, p. 338, 2001.

M. C. Scharber, and N. S. Sariciftci, “Efficiency of bulk-heterojunction organic solar cells,” Progress in Polymer Science, vol. 38, no. 12, pp. 1929-1940, 2013.

M. Hösel, D. Angmo, and F. C. Krebs, “17 - Organic solar cells (OSCs)” in Handbook of Organic Materials for Optical and (Opto)electronic Devices, O. Ostroverkhova, Ed. Woodhead Publishing, 2013, pp. 473-507.

K. Y. Mitra, A. Alalawe, S. Voigt, C. Boeffel, and R. R. Baumann, “Manufacturing of all inkjet-printed organic photovoltaic cell arrays and evaluating their suitability for flexible electronics” Micromachines (Basel), vol. 9, no. 12, 2018.

K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, and Q. Peng, “Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination” Advanced Materials, vol. 34, no. 13, p. 2109516, 2022.

D. Landerer, A. Mertens, D. Freis, R. Droll, T. Leonhard, A. D. Schulz, D. Bahro, and A. Colsmann, “Enhanced thermal stability of organic solar cells comprising ternary D-D-A bulk-heterojunctions” npj Flexible Electronics, vol. 1, no. 1, 2017.

Y. Li, X. Huang, K. Ding, H. K. M. Sheriff Jr, L. Ye, H. Liu, C.-Z. Li, H. Ade, and S. R. Forrest, “Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years” Nature Communications, vol. 12, no. 1, Art. no. 1, 2021.

A. Henemann, “BIPV: Built-in solar energy” Renewable Energy Focus, vol. 9, no. 6, pp. 14-19, 2008.

S. Almosni, A. Delamarre, Z. Jehl, D. Suchet, L. Cojocaru, M. Giteau, B. Behaghel, A. Julian, C. Ibrahim, L. Tatry, H. Wang, T. Kubo, S. Uchida, H. Segawa, N. Miyashita, R. Tamaki, Y. Shoji, K. Yoshida, N. Ahsan, K. Watanabe, T. Inoue, M. Sugiyama, Y. Nakano, T. Hamamura, T. Toupance, C. Olivier, S. Chambon, L. Vignau, C. Geffroy, E. Cloutet, G. Hadziioannou, N. Cavassilas, P. Rale, A. Cattoni, S. Collin, F. Gibelli, M. Paire, L. Lombez, D. Aureau, M. Bouttemy, A. Etcheberry, Y. Okada, and J.-F. Guillemoles, “Material challenges for solar cells in the twenty-first century: directions in emerging technologies” Science and Technology of Advanced Materials, vol. 19, no. 1, pp. 336-369, 2018.

R. Das, “Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players: IDTechEx” Apr. 10, 2013.

F. J. Zhang, D. W. Zhao, Z. L. Zhuo, H. Wang, Z. Xu, and Y. S. Wang, “Inverted small molecule organic solar cells with Ca modified ITO as cathode and MoO3 modified Ag as anode” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2416-2421, 2010.

R. Po, C. Carbonera, A. Bernardi, and N. Camaioni, “The role of buffer layers in polymer solar cells” Energy & Environmental Science, vol. 4, no. 2, pp. 285-310, 2011.

S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V Zaretski, D. Rodriquez, E. J. Sawyer, K. M. Rajan, R. I. Acosta, S. E. Root, and D. J. Lipomi, “Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants” Energy & Environmental Science, vol. 8, no. 1, pp. 55-80, 2014.

E. Pavlopoulou, G. Fleury, D. Deribew, F. Cousin, M. Geoghegan, and G. Hadziioannou, “Phase separation-driven stratification in conventional and inverted P3HT:PCBM organic solar cells” Organic Electronics, vol. 14, no. 5, pp. 1249-1254, 2013.

H. You, L. Dai, Q. Zhang, D. Chen, Q. Jiang, and C. Zhang, “Enhanced performance of inverted non-fullerene organic solar cells by using metal oxide electron- and hole-selective layers with process temperature ≤150 °C” Polymers, vol. 10, no. 7, Art. no. 7, 018.

Y. Udum, P. Denk, G. Adam, D. H. Apaydin, A. Nevosad, C. Teichert, M. S White, and N. S Sariciftci, “Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer” Organic Electronics, vol. 15, no. 5, pp. 997-1001, 2014.

N. Sharma, C. M. S. Negi, V. Yadav, A. S. Verma, V. Sadhu, and S. K. Gupta, “Inverted organic solar cells based on PTB7: PC70BM bulk heterojunction” AIP Conference Proceedings, vol. 2100, no. 1, p. 020061, 2019.

Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, and J. Hou, “Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages” Nature Communications, vol. 10, 2019.

G. Sauvé, and R. Fernando, “Beyond fullerenes: Designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics” The Journal of Physical Chemistry Letters, vol. 6, no. 18, pp. 3770-3780, 2015.

W. Cao, and J. Xue, “Recent progress in organic photovoltaics: device architecture and optical design” Energy & Environmental Science, vol. 7, no. 7, p. 2123, 2014.

S. Kouijzer, J. J. Michels, M. van den Berg, V. S. Gevaerts, M. Turbiez, M. M. Wienk, and R. A. J. Janssen, “Predicting morphologies of solution processed polymer:fullerene blends” Journal of the American Chemical Society, vol. 135, no. 32, pp. 12057-12067, 2013.

S. Bi, Z. Ouyang, S. Shaik, and D. Li, “Effect of donor-acceptor vertical composition profile on performance of organic bulk heterojunction solar cells” Scientific Reports, vol. 8, no. 1, p. 9574, 2018.

W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heegers, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” Advanced Functional Materials, vol. 15, no. 10, pp. 1617-1622, 2005.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nature Materials, vol. 4, no. 11, p. 864, 2005.

Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang, “Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells: effect of solvent mixture on nanoscale phase separation in polymer solar cells” Advanced Functional Materials, vol. 18, no. 12, pp. 1783-1789, 2008.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols” Nature Materials, vol. 6, no. 7, pp. 497-500, 2007.

H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling, and W.-F. Su, “Additives for morphology control in high-efficiency organic solar cells” Materials Today, vol. 16, no. 9, pp. 326-336, 2013.

S. B. Dkhil, M. Pfannmöller, M. I. Saba, M. Gaceur, H. Heidari, C. Videlot‐Ackermann, O. Margeat, A. Guerrero, J. Bisquert, G. Garcia‐Belmonte, A. Mattoni, S. Bals, and J. Ackermann, “Toward high-temperature stability of PTB7-based bulk heterojunction solar cells: impact of fullerene size and solvent additive” Advanced Energy Materials, vol. 7, no. 4, p. 1601486, 2017.

S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks, and L. X. Chen, “Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells” Journal of the American Chemical Society, vol. 133, no. 51, pp. 20661-20663, 2011.

B. A. Collins, Z. Li, J. R. Tumbleston, E. Gann, C. R. McNeill, and H. Ade, “Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7:PC71BM solar cells” Advanced Energy Materials, vol. 3, no. 1, pp. 65-74, 2013.

T. Zhuang, X.-F. Wang, T. Sano, Z. Hong, Y. Yang, and J. Kido, “Fullerene derivatives as electron donor for organic photovoltaic cells” Applied Physics Letters, vol. 103, no. 20, p. 203301, 2013.

R. C. Chiechi, R. W. A. Havenith, and J. C. Hummelen, “Modern plastic solar cells: materials, mechanisms and modeling” Materials Today, vol. 16, no. 7-8, pp. 281-289, 2013.

A. K. Vivek, and G. D. Agrawal, “Organic solar cells: principles, mechanism and recent developments” International Journal of Research in Engineering and Technology, vol. 03, no. 09, pp. 338-341, 2014.

H. Sun, F. Chen, and Z.-K. Chen, “Recent progress on non-fullerene acceptors for organic photovoltaics” Materials Today, vol. 24, pp. 94-118, 2019.

C. Soci, I.-W. Hwang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Photoconductivity of a low-bandgap conjugated polymer” Advanced Functional Materials, vol. 17, no. 4, pp. 632-636, 2007.

G. D. Sharma, M. Anil Reddy, D. V Ramana, and M. Chandrasekharam, “A novel carbazole–phenothiazine dyad small molecule as a non-fullerene electron acceptor for polymer bulk heterojunction solar cells” RSC Advances, vol. 4, no. 63, pp. 33279-33285, 2014.

Q. Peng, T. Liang, and Kui Feng, “Design of low bandgap conjugated polymers for organic solar cell application” 2013.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols” Nature Materials, vol. 6, no. 7, pp. 497-500, 2007.

J. S. Moon, J. Jo, and A. J. Heeger, “Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells” Advanced Energy Materials, vol. 2, no. 3, pp. 304-308, 2012.

S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%” Nature Photonics, vol. 3, no. 5, pp. 297–302, May 2009.

L. Song, W. Wang, E. Barabino, D. Yang, V. Körstgens, P. Zhang, S. V Roth, and P. Müller-Buschbaum, “Composition–morphology correlation in PTB7-Th/PC71BM blend films for organic solar cells” ACS Applied Materials & Interfaces, vol. 11, no. 3, pp. 3125-3135, 2019.

L. Lu, and L. Yu, “Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it” Advanced Materials, vol. 26, no. 26, pp. 4413-4430, 2014.

S. Ben Dkhil, M. Pfannmöller, S. Bals, T. Koganezawa, N. Yoshimoto, D. Hannani, M. Gaceur, C. Videlot-Ackermann, O. Margeat, and J. Ackermann, “Square-centimeter-sized high-efficiency polymer solar cells: How the processing atmosphere and film quality influence performance at large scale” Advanced Energy Materials, vol. 6, no. 13, p. 1600290, 2016.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells” Nature Communications, vol. 5, no. 1, 2014.

J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, “Efficient organic solar cells processed from hydrocarbon solvents” Nature Energy, vol. 1, no. 2, p. 15027, 2016.

H. Spanggaard, and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics” Solar Energy Materials And Solar Cells, vol. 83, no. 2-3, pp. 125-146, 2004.

E. von Hauff, V. Dyakonov, and J. Parisi, “Study of field effect mobility in PCBM films and P3HT : PCBM blends” Solar Energy Materials And Solar Cells, vol. 87, no. 1-4, pp. 149-156, May 2005.

H. Xin, X. Guo, G. Ren, M. D. Watson, and S. A. Jenekhe, “Efficient phthalimide copolymer-based bulk heterojunction solar cells: How the Processing additive influences nanoscale morphology and photovoltaic properties” Advanced Energy Materials, vol. 2, no. 5, pp. 575–582, 2012.

P. Cheng, G. Li, X. Zhan, and Y. Yang, “Next-generation organic photovoltaics based on non-fullerene acceptors” Nature Photonics, vol. 12, no. 3, pp. 131-142, 2018.

Y. He, and Y. Li, “Fullerene derivative acceptors for high performance polymer solar cells” Physical Chemistry Chemical Physics, vol. 13, no. 6, pp. 1970-1983, 2011.

M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, “Stability of polymer solar cells” Advanced Materials, vol. 24, no. 5, pp. 580-612, 2012.

P. Cheng, and X. Zhan, “Stability of organic solar cells: challenges and strategies” Chemical Society Reviews, vol. 45, no. 9, pp. 2544-2582, 2016.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges” Science, vol. 352, no. 6283, p. aad4424, 2016.

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research” Advanced Materials, vol. 23, no. 31, pp. 3597–-3602, A2011.

C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder, and X. Zhan, “Non-fullerene acceptors for organic solar cells” Nature Reviews Materials, vol. 3, p. 18003, 2018.

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, “Molecular optimization enables over 13% efficiency in organic solar cells” Journal of the American Chemical Society, vol. 139, no. 21, pp. 7148-7151, 2017.

H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, and J. Hou, “Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors” Advanced Materials, vol. 30, no. 28, p. e1800613, 2018.

C.-C. Chueh, C.-Z. Li, and A. K.-Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells” Energy & Environmental Science, vol. 8, no. 4, pp. 1160-1189, 2015.

S. Ben Dkhil, M. Pfannmöller, S. Bals, T. Koganezawa, N. Yoshimoto, D. Hannani, M. Gaceur, C. Videlot-Ackermann, O. Margeat, and J. Ackermann, “Square-centimeter-sized high-efficiency polymer solar cells: How the processing atmosphere and film quality influence performance at large scale” Advanced Energy Materials, vol. 6, no. 13, p. 1600290, 2016.

M. Li, W. Ni, B. Kan, X. Wan, L. Zhang, Q. Zhang, G. Long, Y. Zuo, and Y. Chen, “Graphene quantum dots as the hole transport layer material for high-performance organic solar cells” Physical Chemistry Chemical Physics, vol. 15, no. 43, pp. 18973–18978, 2013.

C.-C. Chueh, C.-Z. Li, and A. K.-Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells” Energy & Environmental Science, vol. 8, no. 4, pp. 1160-1189, Apr. 2015.

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, “Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy” Organic Electronics, vol. 9, no. 5, pp. 847-851, 2008.

V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells” Journal of Applied Physics, vol. 94, no. 10, pp. 6849-6854, 2003.

A. Mityashin, D. Cheyns, B. P. Rand, and P. Heremans, “Understanding metal doping for organic electron transport layers” Applied Physics Letters, vol. 100, no. 5, p. 053305, 2012.

M. Gaceur, S. Ben Dkhil, D. Duché, F. Bencheikh, J.-J. Simon, L. Escoubas, M. Mansour, A. Guerrero, G. Garcia-Belmonte, X. Liu, M. Fahlman, W. Dachraoui, A. K. Diallo, C. Videlot-Ackermann, O. Margeat, and J. Ackermann, “Ligand-free synthesis of aluminum-doped zinc oxide nanocrystals and their use as optical spacers in color-tuned highly efficient organic solar cells” Advanced Functional Materials, vol. 26, no. 2, pp. 243-253, 2016.

S. Lattante, “Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells” Electronics, vol. 3, no. 1, pp. 132-164, -2014.

H.-L. Yip, and A. K.-Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells” Energy & Environmental Science, vol. 5, no. 3, pp. 5994-6011, 2012.

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells” Advanced Materials, vol. 19, no. 12, pp. 1551-1566, 2007.

C.-Z. Li, H.-L. Yip, and A. K.-Y. Jen, “Functional fullerenes for organic photovoltaics” Journal of Materials Chemistry, vol. 22, no. 10, pp. 4161-4177, 2012.

C.-Z. Li, C.-C. Chueh, H.-L. Yip, K. M. O’Malley, W.-C. Chen, and A. K.-Y. Jen, “Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants” Journal of Materials Chemistry, vol. 22, no. 17, pp. 8574–8578, 2012.

R. Steim, F. R. Kogler, and C. J. Brabec, “Interface materials for organic solar cells” Journal of Materials Chemistry, vol. 20, no. 13, pp. 2499-2512, 2010.

N. Camaioni, and R. Po, “Pushing the envelope of the intrinsic limitation of organic solar cells” The Journal of Physical Chemistry Letters, vol. 4, no. 11, pp. 1821-1828, 2013.

S. Ben Dkhil, D. Duché, M. Gaceur, A. K. Thakur, F. B. Aboura, L. Escoubas, J.-J. Simon, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Q. Bao, M. Fahlman, C. Videlot-Ackermann, O. Margeat, and J. Ackermann, “Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells” Advanced Energy Materials, vol. 4, no. 18, p. 1400805, 2014.

K. Suemori, M. Yokoyama, and M. Hiramoto, “Electrical shorting of organic photovoltaic films resulting from metal migration” Journal of Applied Physics, vol. 99, no. 3, p. 036109, F2006.

G. Wantz, L. Hirsch, N. Huby, L. Vignau, J. F. Silvain, A. S. Barriére, and J. P. Parneix, “Correlation between the Indium Tin Oxide morphology and the performances of polymer light-emitting diodes” Thin Solid Films, vol. 485, no. 1-2, pp. 247-251, 2005.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-Stable polymer electronic devices” Advanced Materials, vol. 19, no. 18, pp. 2445-2449, 2007.

K.-H. Tu, S.-S. Li, W.-C. Li, D.-Y. Wang, J.-R. Yang, and C.-W. Chen, “Solution processable nanocarbon platform for polymer solar cells” Energy & Environmental Science, vol. 4, no. 9, p. 3521, 2011.

C. T. G. Smith, R. W. Rhodes, M. J. Beliatis, K. D. G. Imalka Jayawardena, L. J. Rozanski, C. A. Mills, and S. R. P. Silva, “Graphene oxide hole transport layers for large area, high efficiency organic solar cells” Applied Physics Letters, vol. 105, no. 7, p. 073304, 2014.

L. Zhou, D. Yang, W. Yu, J. Zhang, and C. Li, “An efficient polymer solar cell using graphene oxide interface assembled via layer-by-layer deposition” Organic Electronics, vol. 23, pp. 110–115, 2015.

S. Mao, H. Pu, and J. Chen, “Graphene oxide and its reduction: modeling and experimental progress” RSC Advances, vol. 2, no. 7, pp. 2643–2662, 2012.

S. Rafique, N. A. Roslan, S. M. Abdullah, L. Li, A. Supangat, A. Jilani, and M. Iwamoto, “UV- ozone treated graphene oxide/ PEDOT:PSS bilayer as a novel hole transport layer in highly efficient and stable organic solar cells” Organic Electronics, vol. 66, pp. 32-42, 2019.

X. Ouyang, R. Peng, L. Ai, X. Zhang, and Z. Ge, “Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte” Nature Photonics, vol. 9, no. 8, pp. 520-524, 2015.

V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, and A. J. Heeger, “Barium: An efficient cathode layer for bulk-heterojunction solar cells” Scientific Reports, vol. 3, no. 1, p. 1965, 2013.

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer” Scientific Reports, vol. 4, no. 1, p. 4691, 2015.

Z. Tan, L. Li, C. Li, L. Yan, F. Wang, J. Xu, L. Yu, B. Song, J. Hou, and Y. Li, “Trapping light with a nanostructured CeOx /Al back electrode for high-performance polymer solar cells” Advanced Materials Interfaces, vol. 1, no. 8, p. 1400197, 2014.

S. Shao, J. Liu, J. Bergqvist, S. Shi, C. Veit, U. Würfel, Z. Xie, and F. Zhang, “In Situ Formation of MoO3 in PEDOT: PSS Matrix: A facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells” Advanced Energy Materials, vol. 3, no. 3, pp. 349-355, 2013.

H. Bin, T. P. A. van der Pol, J. Li, B. T. van Gorkom, M. M. Wienk, and R. A. J. Janssen, “Efficient organic solar cells with small energy losses based on a wide-bandgap trialkylsilyl-substituted donor polymer and a non-fullerene acceptor” Chemical Engineering Journal, vol. 435, p. 134878, 2022.

Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei,and J. Hou, “Single-Junction Organic Photovoltaic Cell with 19% Efficiency” Advanced Materials, vol. 33, no. 41, p. 2102420, 2021.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells” Energy & Environmental Science, vol. 8, no. 4, pp. 1059-1091, 2015.

W.-H. Baek, M. Choi, T.-S. Yoon, H. H. Lee, and Y.-S. Kim, “Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells” Applied Physics Letters, vol. 96, no. 13, p. 133506, 2010.

Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, and Y. Li, “Combination of Indene-C60 Bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells” Journal of the American Chemical Society, vol. 132, no. 49, pp. 17381-17383, 2010.

S. K. Hau, H.-L. Yip, H. Ma, and A. K.-Y. Jen, “High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer” Applied Physics Letters, vol. 93, no. 23, p. 233304, 2008.

S. Chen, J. R. Manders, S.-W. Tsang, and F. So, “Metal oxides for interface engineering in polymer solar cells” Journal of Materials Chemistry, vol. 22, no. 46, p. 24202, 2012.

J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, “Transition metal oxides for organic electronics: energetics, device physics and applications” Advanced Materials, vol. 24, no. 40, pp. 5408–5427, Oct. 2012.

X. Liang, S. Bai, X. Wang, X. Dai, F. Gao, B. Sun, Z. Ning, Z. Ye, and Y. Jin, “Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells” Chemical Society Reviews., vol. 46, no. 6, pp. 1730-1759, 2017.

S. Lattante, “Electron and Hole transport layers: Their use in inverted bulk heterojunction polymer solar cells” Electronics, vol. 3, no. 1, pp. 132-164, 2014.

K. Zilberberg, S. Trost, H. Schmidt, and T. Riedl, “Solution processed vanadium pentoxide as charge extraction layer for organic solar cells” Advanced Energy Materials, vol. 1, no. 3, pp. 377-381, 2011.

C.-P. Chen, Y.-D. Chen, and S.-C. Chuang, “High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer” Advanced Materials, vol. 23, no. 33, pp. 3859-3863, 2011.

X. Bao, Q. Zhu, T. Wang, J. Guo, C. Yang, D. Yu, N. Wang, W. Chen, and R. Yang, “Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells” ACS Applied Materials & Interfaces, vol. 7, no. 14, pp. 7613-7618, 2015.

K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lützenkirchen-Hecht, R. Frahm, and T. Riedl, “Inverted organic solar cells with sol-gel processed high work-function vanadium oxide hole-extraction layers,” Advanced Functional Materials, vol. 21, no. 24, pp. 4776-4783, 2011.

Z. Tan, W. Zhang, C. Cui, Y. Ding, D. Qian, Q. Xu, L. Li, S. Li, and Y. Li, “Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells” Physical Chemistry Chemical Physics, vol. 14, no. 42, pp. 14589-14595, -2012.

F. Xie, W. C. H. Choy, C. Wang, X. Li, S. Zhang, J. Hou, “Low-Temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics” Advanced Materials, vol. 25, no. 14, pp. 2051-2055, 2013.

X. Li, F. Xie, S. Zhang, J. Hou, and W. C. H. Choy, “Over 1.1 eV work function tuning of cesium intercalated metal oxides for functioning as both electron and hole transport layers in organic optoelectronic devices” Advanced Functional Materials, vol. 24, no. 46, pp. 7348-7356, 2014.

S.-P. Cho, J.-S. Yeo, D.-Y. Kim, S. Na, and S.-S. Kim, “Brush painted V2O5 hole transport layer for efficient and air-stable polymer solar cells” Solar Energy Materials and Solar Cells, vol. 132, pp. 196-203, 2015.

X. Yang, E. Mutlugun, Y. Zhao, Y. Gao, K. S. Leck, Y. Ma, L. Ke, S. T. Tan, H. V. Demir, and X. W. Sun, “Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes” Small, vol. 10, no. 2, pp. 247-252, 2014.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells” Applied Physics Letters, vol. 94, no. 4, p. 043311, 2009.

S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes” Organic Electronics, vol. 10, no. 5, pp. 791-797, 2009.

Z. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, and Y. Li, “Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells” The Journal of Physical Chemistry C, vol. 116, no. 35, pp. 18626-18632, 2012.

H. Choi, B. Kim, M. J. Ko, D.-K. Lee, H. Kim, S. H. Kim, and K. Kim, “Solution processed WO3 layer for the replacement of PEDOT:PSS layer in organic photovoltaic cells” Organic Electronics, vol. 13, no. 6, pp. 959-968, 2012.

T. Stubhan, N. Li, N. A. Luechinger, S. C. Halim, G. J. Matt, and C. J. Brabec, “High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer” Advanced Energy Materials, vol. 2, no. 12, pp. 1433-1438, 2012.

R. Lampande, G. W. Kim, J. Boizot, Y. J. Kim, R. Pode, and J. H. Kwon, “A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells” Journal of Materials Chemistry A, vol. 1, no. 23, pp. 6895–-6900, 2013.

Z. Zheng, Q. Hu, S. Zhang, D. Zhang, J. Wang, S. Xie, R. Wang, Y. Qin, W. Li, L. Hong, N. Liang, F. Liu, Y. Zhang, Z. Wei, Z. Tang, T. P. Russell, J. Hou, and H. Zhou, “A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer” Advanced Materials, vol. 30, no. 34, p. 1801801, 2018.

Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, “Efficient, Air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer” Advanced Materials, vol. 23, no. 19, pp. 2226-2230, 2011.

S. Chen, C. E. Small, C. M. Amb, J. Subbiah, T. Lai, S.-W. Tsang, J. R. Manders, J. R. Reynolds, and F. So, “Inverted Polymer Solar Cells with Reduced Interface Recombination” Advanced Energy Materials, vol. 2, no. 11, pp. 1333-1337, Nov. 2012.

S. Murase, and Y. Yang, “Solution processed MoO3 Interfacial layer for organic photovoltaics prepared by a facile synthesis method” Advanced Materials, vol. 24, no. 18, pp. 2459-2462, 2012.

Z. Tan, D. Qian, W. Zhang, L. Li, Y. Ding, Q. Xu, F. Wang, and Y. Li, “Efficient and stable polymer solar cells with solution- processed molybdenum oxide interfacial layer” Journal of Materials Chemistry A, vol. 1, no. 3, pp. 657-664, 2012.

K. Zilberberg, H. Gharbi, A. Behrendt, S. Trost, and T. Riedl, “Low-temperature, solution-processed MoOx for efficient and stable organic solar cells” ACS Applied Materials & Interfaces, vol. 4, no. 3, pp. 1164-1168, 2012.

S. R. Hammond, J. Meyer, N. E. Widjonarko, P. F. Ndione, A. K. Sigdel, A. Garcia, A. Miedaner, M. T. Lloyd, A. Kahn, D. S. Ginley, J. J. Berry, and D. C. Olson, “Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics” Journal of Materials Chemistry, vol. 22, no. 7, p. 3249, 2012.

T. Stubhan, T. Ameri, M. Salinas, J. Krantz, F. Machui, M. Halik, and C. J. Brabec, “High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension” Applied Physics Letters, vol. 98, no. 25, p. 253308, 2011.

Z. Yi Wang, S.-H. Lee, D.-H. Kim, J.-H. Kim, and J.-G. Park, “Effect of NiOx thin layer fabricated by oxygen-plasma treatment on polymer photovoltaic cell” Solar Energy Materials and Solar Cells, vol. 94, no. 10, pp. 1591-1596, 2010.

M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells” Proceedings of the National Academy of Sciences, vol. 105, no. 8, pp. 2783-2787, 2008.

S.-Y. Park, H.-R. Kim, Y.-J. Kang, D.-H. Kim, and J.-W. Kang, “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2332-2336, 2010.

K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics” Organic Electronics, vol. 11, no. 8, pp. 1414-1418, 2010.

B. Mustafa, J. Griffin, A. S. Alsulami, D. G. Lidzey, and A. R. Buckley, “Solution processed nickel oxide anodes for organic photovoltaic devices” Applied Physics Letters, vol. 104, no. 6, p. 063302, 2014.

Z. Zhai, X. Huang, M. Xu, J. Yuan, J. Peng, and W. Ma, “Greatly reduced processing temperature for a solution-processed NiOx buffer layer in polymer solar cells” Advanced Energy Materials, vol. 3, no. 12, pp. 1614-1622, 2013.

S. Bai, M. Cao, Y. Jin, X. Dai, X. Liang, Z. Ye, M. Li, J. Cheng, X. Xiao, Z. Wu, Z. Xia, B. Sun, E. Wang, Y. Mo, F. Gao, and F. Zhang, “Low-temperature combustion-synthesized nickel oxide thin films as hole-transport interlayers for solution-processed optoelectronic devices” Advanced Energy Materials, vol. 4, no. 6, p. 1301460, 2014.

J. Zhang, J. Wang, Y. Fu, B. Zhang, and Z. Xie, “Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers” The Journal of Physical Chemistry C, vol. 2, no. 39, pp. 8295-8302, 2014.

X. Liang, Q. Yi, S. Bai, X. Dai, X. Wang, Z. Ye, F. Gao, F. Zhang, B. Sun, and Y. Jin, “Synthesis of unstable colloidal inorganic nanocrystals through the introduction of a protecting ligand” Nano Letters, vol. 14, no. 6, pp. 3117-3123, 2014.

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng,“Post-treatment-free solution-processed non-stoichiometric NiO(x) nanoparticles for efficient hole-transport layers of organic optoelectronic devices” Advanced Materials, vol. 27, no. 18, pp. 2930-2937, 2015.

A. Singh, S. K. Gupta, and A. Garg, “Inkjet printing of NiO films and integration as hole transporting layers in polymer solar cells” Scientific Reports, vol. 7, 2017.

Q. He, K. Yao, X. Wang, X. Xia, S. Leng, and F. Li, “Room-Temperature and solution-processable cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells” ACS Applied Materials & Interfaces, vol. 9, no. 48, pp. 41887-41897, 2017.

J. Zheng, L. Hu, J. S. Yun, M. Zhang, C. F. J. Lau, J. Bing, X. Deng, Q. Ma, Y. Cho, W. Fu, C. Chen, M. A. Green, S. Huang, and A. W. Y. Ho-Baillie, “Solution-processed, silver-doped niox as hole transporting layer for high-efficiency inverted perovskite solar cells” ACS Applied Energy Materials, vol. 1, no. 2, pp. 561-570, 2018.

R. Alkarsifi, Y. A. Avalos-Quiroz, P. Perkhun, X. Liu, M. Fahlman, A. K. Bharwal, C. M. Ruiz, D. Duché, J.-J. Simon, C. Videlot-Ackermann, O. Margeat, and J. Ackermann, “Organic–inorganic doped nickel oxide nanocrystals for hole transport layers in inverted polymer solar cells with color tuning” Materials Chemistry Frontiers, vol. 5, no. 1, pp. 418-429, 2020.

Downloads

Published

2022-12-26

How to Cite

[1]
R. ALKARSIFI, J. . ACKERMANN, and O. . MARGEAT, “Hole transport layers in organic solar cells: A review”, J Met Mater Miner, vol. 32, no. 4, pp. 1–22, Dec. 2022.

Issue

Section

Review Articles