Composition of CNT and WO<sub>3</sub> nanoplate: synthesis and NH<sub>3</sub> gas sensing characteristics at low temperature
Abstract
WO3 nanoplate synthesized by acid precipitation method was composited with commercial carbon nanotube with different weight percents (0.5, 1.0, and 1.5 wt% of CNT). The ammonia gas sensing characteristics of composite materials at low temperature (50°C) were investigated and compared with that of pristine materials (WO3 nanoplate, commercial carbon nanotube). The results showed that the composition enhanced the gas sensing properties in comparison with the pristine carbon nanotube-based sensor and more stable than pristine WO3 nanoplate-based sensor. The response of gas sensors to 30 ppm of ammonia got the highest value of 45% in 0.5 wt%-CNT sensor – enhanced 100 times in comparison with carbon nanotube-based sensor. The calculated limit of detection of 0.5 wt%CNT/WO3 sensor was at sub-trace-level of 3 ppb. This enhancement shows the high applicability of composite materials in gas sensor working at room temperature.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.