Effects of annealing treatment on microstructure and hardness in the 28 wt% Cr cast iron with Mo/W addition

Authors

  • Kittikhun RUANGCHAI Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
  • Ruangdaj TONGSRI Powder Metallurgy Research and Development Unit (PM-RDU), Thailand National Metal and Materials Technology Center, Pathum Thani, 12120, Thailand
  • John Thomas Harry PEARCE Panyapiwat Institute of Management, Nonthaburi 11120, Thailand
  • Torranin CHAIRUANGSRI Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, ChiangMai 50200, Thailand
  • Amporn WIENGMOON Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand

DOI:

https://doi.org/10.55713/jmmm.v31i2.1059

Keywords:

High chromium cast iron, Microstructure, Annealing, Hardness, Carbide

Abstract

In this study, the effects of annealing on the hardness and microstructure of 28 wt% Cr-2.6 wt% C iron with 1.4 wt% Mo/1 wt% W addition have been investigated. The as-cast samples were heated to 800℃ and held for 4 h followed by slow cooled with a cooling rate of 20℃h-1 to 500℃. Microstructures were characterized by X-ray diffractometry, optical microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Vickers macro-hardness and micro-hardness were measured. It was found that the as-cast microstructure in the hypoeutectic 28 wt% Cr iron without Mo or W addition consisted of primary austenite dendrite, eutectic M7C3 carbide and martensite. In the iron with 1.4 wt% Mo addition, multiple eutectic carbides of M7C3, M23C6 and M6C were observed. In contrast the addition of 1 wt% W changed the structure to hypereutectic containing primary M7C3, eutectic M7C3 and martensite. After the annealing heat treatment, ferrite +secondary carbides and some pearlite were present in the irons, due to decomposition of austenite during annealing. The macro-hardness in the as-cast condition of the iron without alloying and the irons with 1.4 wt% Mo/ 1 wt% W addition were 506, 529, and 576 HV30, respectively. Annealing heat treatment reduced the macro-hardness to about 390, 463, and 428 HV30, respectively.

Downloads

Download data is not yet available.

References

C. P. Tabrett, I. R. Sare, and M. R.Ghomashchi, “Microstructure-property relationships in high chromium white iron alloys,” International Materials Reviews, vol. 41, pp. 59-82, 1996. DOI: https://doi.org/10.1179/imr.1996.41.2.59

G. Laird, R. Gundlach, and K. Rohrig, Abrasion-resistant cast iron Handbook. USA: AFS, 2000.

A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D. V. Edmonds, and J. T. H. Pearce, “Microstructural and crystallo-graphical study of carbides in 30 wt%Cr cast irons,” Acta Materialia, vol. 53, pp. 4143-4154, 2005. DOI: https://doi.org/10.1016/j.actamat.2005.05.019

M. Filipovic, Z. Kamberovic, and M. Korac, “Solidification of High Chromium white cast iron alloyed with vanadium,” Materials Transactions, vol. 52, pp. 386-390, 2011. DOI: https://doi.org/10.2320/matertrans.M2010059

P. Dupin, and J. M. Schissler, “Influence of addition of silicon, molybdenum, vanadium, and tungsten upon the structural evolution of the as-cast state of a high-chromium cast iron (20% Cr, 2.6% C).” AFS Transactions, vol. 92, pp. 355-360, 1984.

J. W. Choi, and S. K. Chang, “Effects of molybdenum and copper additions on microstructure of high chromium cast iron rolls.” ISIJ International, vol. 32, pp. 1170-1176, 1992. DOI: https://doi.org/10.2355/isijinternational.32.1170

K. Yamamoto, S. Inthidech, N. Sasaguri, and Y. Matsubara, “Influence of Mo and W on high temperature hardness of M7C3 carbide in high chromium white cast iron,” Materials Transactions,” vol. 55, pp. 684-689, 2014. DOI: https://doi.org/10.2320/matertrans.F-M2014801

S. Imurai, C. Thanachayanont, J. T. H. Pearce, K. Tsuda, and T. Chairuangsri, “Effects of Mo on microstructure of as-cast 28 wt% Cr-2.6 wt% C-(0-10) wt% Mo irons.” Materials Characterization, vol. 90, pp. 99-112, 2014. DOI: https://doi.org/10.1016/j.matchar.2014.01.014

S. H. Mousavi Anijdan , A. Bahrami, N. Varahram, and P. Davamic, “Effects of tungsten on erosion–corrosion behavior of high chromium white cast iron.” Materials Science and Engineering, vol. 454-455, pp. 623-628, 2007. DOI: https://doi.org/10.1016/j.msea.2006.11.128

S. Imurai, C. Thanachayanont, J. T. H. Pearce, K. Tsuda, and T. Chairuangsri, “Effects of W on microstructure of as-cast 28 wt% Cr-2.6 wt% C-(0-10) wt%W irons.” Materials Characterization, vol. 99, pp. 52-60, 2015. DOI: https://doi.org/10.1016/j.matchar.2014.11.012

K. A. Kibble, and J. T. H. Pearce, “An examination of the effects of heat treatment secondary carbide formation in 25% Cr high chromium irons,” Cast Metals, vol. 8, pp. 123-127, 1995. DOI: https://doi.org/10.1080/09534962.1995.11819200

K. A. Kibble, and J. T. H. Pearce, “Influence of heat treatment on the microstructure and hardness of 19% high-chromium cast irons,” Cast Metals, vol. 6, pp. 9-15, 1993. DOI: https://doi.org/10.1080/09534962.1993.11819121

L. Chen, J. Zhou, V. Bushlya, and J. E. Stahl, “Influences of micro mechanical property and microstructure on performance of machining high chromium white cast iron with CBN tools” Procedia CIRP, vol. 31, pp. 172-178, 2015. DOI: https://doi.org/10.1016/j.procir.2015.03.092

P. O. Cubillos, P. A. N. Bernardini, M. C. Fredel, and R. A. Campos, “Wear resistance of high chromium white cast iron for coal grinding rolls,”Revista Facultad de Ingenieria, University of Antioquia, vol. 76, pp. 134-142, 2015.

A. E. Karantzalis, A. Lekatou, and H. Mavros, “Microstructural modifications of as-cast high-chromium white iron by heat treatment,” Journal of Materials Engineering and Performance, vol. 18, pp. 174-181, 2009. DOI: https://doi.org/10.1007/s11665-008-9285-6

J. O. Agunsoye, and A. A. Ayeni, “Effect of heat treatment on the abrasive wear behavior of high chromium iron under dry sliding condition.” Tribology in Industry, vol. 34(2), pp. 82-91, 2012.

M. N. Berkun, I. P. Volchok, I. V. Zhivitsa, and V. I. Topal, “Effect of heat treatment on the properties of high-chromium cast iron.” Metal Science and Heat Treatment, vol. 13, pp. 69-71, 1971. DOI: https://doi.org/10.1007/BF00663785

A. Wiengmoon, J. Khantee, J. T. H. Pearce, and T. Chairuangsri, Effect of pre-annealing heat treatment on destabilization behavior of 28 wt% Cr-2.6 wt% C high-chromium cast iron, IOP Conference Series: Materials Science and Engineering, vol. 474, pp. 1-6, 2019. DOI: https://doi.org/10.1088/1757-899X/474/1/012041

Downloads

Published

2021-06-27

How to Cite

[1]
K. RUANGCHAI, R. TONGSRI, J. T. H. PEARCE, T. CHAIRUANGSRI, and A. WIENGMOON, “Effects of annealing treatment on microstructure and hardness in the 28 wt% Cr cast iron with Mo/W addition ”, J Met Mater Miner, vol. 31, no. 2, pp. 89–95, Jun. 2021.

Issue

Section

Original Research Articles

Most read articles by the same author(s)