Mechanical properties of poly(lactic acid) composites reinforced with microfibrillated cellulose prepared using high speed blending
Keywords:
Microfibrillated cellulose, Stress transfer, Composite, Mechanical properties, Bamboo fibersAbstract
Bamboo fibers, as a raw cellulose source, were used to prepare microfibrillated cellulose (MFC) using a high speed blender at 20,000 rpm for 60 min. Nanofibers with the width of less than 100 nm were disintegrated from the fibers. MFC networks were then prepared, and embedded in poly(lactic acid) resin using a compression molding at temperature of 180 ºC and a pressure of 10 MPa. Mechanical properties of poly(lactic acid) composites reinforced with MFC were investigated. The interaction between MFC fibrils and PLA resin was observed. As a result, Young’s modulus and tensile strength of the composites increased to 3.1 GPa and 39 MPa respectively, compared to values of 2.4 GPa and 33 MPa for Young’s modulus and tensile strength of pure poly(lactic acid) resin. This indicates the stress can be transferred from the matrix to the reinforcement phase. The improvement of mechanical properties of the composites confirms that MFC prepared using a high speed blender can be used as reinforcement.Downloads
References
Turbak, A.F., Snyder, F.W. and Sandberg, K.R. (1983). Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 37 : 815-827.
Herrick, F.W., Casebier, R.L., Hamilton, J.K. and Sandberg, K.R. (1983). Microfibrillated Cellulose : Morphologyand accessibility. J. Appl. Polym. Sci. Appl. Polym. Symp. 37 : 797-813.
Abe, K., Iwamoto, S. and Yano H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 8 : 3276-3278.
Iwatake, A., Nogi, M. and Yano, H. (2008). Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68(9) : 2103-2106.
Uetani, K. and Yano, H. (2011). Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules. 12(2) : 348-353.
Cheng, Q., Wang, S. and Rials, T.G. (2009). Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos. Part A Appl. Sci. Manuf. 40(2) : 218-224.
Wang, S. and Cheng, Q. (2009). A novel process to isolate fibrils from cellulose fibers by highintensity ultrasonication, Part 1: Process optimization. J. Appl. Polym. Sci. 113(2) : 1270-1275.
Siro, I. and Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials : A review. Cellulose. 17(3) : 459-494.
Tanpichai, S., Sampson, W.W. and Eichhorn, S.J. (2012). Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Compos. Part A Appl. Sci. Manuf. 43(7) : 1145-1152.
Quero, F., Nogi, M., Yano, H., Abdulsalami, K., Holmes, S.M., Sakakini, B.H. and Eichhorn, S.J. (2010). Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. ACS Appl. Mater. Interfaces. 2(1) : 321-330.
Kowalczyk, M., Piorkowska, E., Kulpinski, P. and Pracella, M. (2011). Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos. Part A Appl. Sci. Manuf. 42(10) : 1509-1514.
Cheng, Q., Wang, S., Rials, T.G. and Lee., S.H. (2007). Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced With Fibrils Isolated From Regenerated Cellulose Fibers. Cellulose. 14(6) : 593-602.
Iwamoto, S., Yamamoto, S., Lee, S.H. and Endo, T. Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose. Compos. Part A Appl. Sci. Manuf. 59 : 26-29.
Tang, C. and Liu, H. (2008). Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos. Part A Appl. Sci. Manuf. 39(10) : 1638-1643.
Lu, J., Wang, T. and Drzal, L.T. (2008). Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos. Part A Appl. Sci. Manuf. 39(5) : 738-746.
Tanpichai, S., Quero, F., Nogi, M., Yano, H., Young, R.J., Lindstrom, T., Sampson, W.W., Eichhorn, S.J. (2012). Effective young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules. 13(5) : 1340-1349.
Sanchez - Garcia, M.D. and Lagaron, J.M. (2010). On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose. 17(5) : 987-1004.
Jonoobi, M., Aitomäki, Y., Mathew, A.P. and Oksman, K. (2014). Thermoplastic polymer impregnation of cellulose nanofibre networks: Morphology, mechanical and optical properties. 58 : 30-35.
Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A. and Peijs, T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1) : 1-33.
Siqueira, G., Bras, J. and Dufresne, A. (2009). Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 10(2) : 425-432.
Chen, W.S., Yu, H.P., Liu, Y.X., Chen, P., Zhang, M.X. andHai, Y.F. (2011).Individualization of cellulose nanofibers from wood using high - intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83(4) : 1804-1811.
Chen, W.S., Yu, H.P., Liu, Y.X., Hai, Y.F., Zhang, M.X. and Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical - ultrasonic process. Cellulose. 18(2) : 433-442.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.