Structural, morphological, magnetic, and dielectric properties of copper-substituted Cu\(_{X}\)Zn\(_{(1-X)}\)Fe\(_{2}\)O\(_{4}\) nanoparticles: Green synthesis
DOI:
https://doi.org/10.55713/jmmm.v34i3.1955Keywords:
XRD, SEM, TEM, Magnetic properties, Dielectric studiesAbstract
Structural, Magnetic, and Dielectric investigations on the “CuX Zn(1-X) Fe2O4” X with stoichiometry (X=0, 0.3, 0.5, 0.7, and 1) were synthesized by solution combustion method using Aloe Vera extraction. The X-ray diffraction method was utilized to characterize the as-synthesized Cu-Zn ferrites. The results indicated the presence of cubic spinel structure with Fd‒3 m space group, and absence of other contaminates. The lattice parameter was found to increase with the increase in Zinc concentration. The patterns of TEM confirm that the particle is within the nanometer range (35 nm to 50 nm). Magnetic properties investigated by vibrating sample magnetometry, reveal that the MS, MR, and HC values decrease with an increase in Zn concentration. The dielectric studies performed at room temperature show that the increase in frequency decreased the dielectric loss and Cu0.5Zn0.5Fe2O4 exhibits higher dielectric constant and dielectric loss are studied at the frequency range studied. Thus, the prepared samples have potential applications in semi-conductor and EMI shielding devices.
Downloads
References
A. Azam. “Microwave-assisted synthesis and characterization of Co doped Cu ferrite nanoparticles,” Journal of alloys and compounds, vol. 540, pp. 145-153, 2012. DOI: https://doi.org/10.1016/j.jallcom.2012.06.068
S. Tao, F. Gao, X. Liu, and O. T. Sørensen. “Preparation and gas-sensing properties of CuFe2O4 at reduced temperature,” Materials Science and Engineering: B, vol. 77, no.2 , pp.172-176, 2000. DOI: https://doi.org/10.1016/S0921-5107(00)00473-6
H. Sozeri, H. Deligoz, H. Kavas, and A. Baykal, “Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+)”, Ceramics International, vol. 40, pp. 8645-8657, 2014.
V. Manikandan, A.Vanitha, E. R. Kumar, and J. Chandrasekaran, “Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 Nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 423, pp. 250-255, 2017. DOI: https://doi.org/10.1016/j.jmmm.2016.09.077
T. Koutzarova, S. Kolev, C. Ghelev, K. Grigorov, and I. Nedkov, “Structural and magnetic properties and preparation techniques of nano-sized M-type hexaferrite powders,” Advances in Nanoscale magnetism, vol. 1, pp. 183-203, 2009. DOI: https://doi.org/10.1007/978-3-540-69882-1_10
S. S. Khot, N. S. Shinde, B. P. Ladgaonkar, B. Bkale, and S. C. Watawe, “Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature” Advances in Applied science research, vol. 2, pp. 460-471, 2011.
V. Pillai, P. Kumar, M. S Multani, and D. O Shah, “Structure and magnetic properties of nanoparticles barium ferrite synthesized using micro emulsion processing,” colloids and surfaces A: physicochemical and engineering Aspects, vol. 80, pp. 69-75, 1993. DOI: https://doi.org/10.1016/0927-7757(93)80225-4
L. Lechevallier, J. M. Le Breton, J. F.Wang, and I. R. Harris, “Structural analysis of hydrothermally synthesized Sr(1-x) Smx Fe12O19 hexagonal ferrites,” Journal for magnetism and magnetic materials. vol. 269, pp. 192-196, 2004. DOI: https://doi.org/10.1016/S0304-8853(03)00591-2
C. O. Augustin, R. kalaiselvan, R. Nagaraj, and L. John Berchmans, “Effect of La3+ substitution on the structural, electrical and electrochemical properties of strontium ferrite by citrate combustion method,” Materials Chemistry and Physics, vol. 89, pp. 406-411, 2005. DOI: https://doi.org/10.1016/j.matchemphys.2004.09.028
K. C. Patil, S. T. Aruna, and S. Ekambrarm, “Combustion synthesis, Current opinion in solid state and materials science, vol. 2, pp. 158-165, 1997. DOI: https://doi.org/10.1016/S1359-0286(97)80060-5
E. Wu. S. J Campbell, and W. A Kaczmarek, “Mossbauer effect study of ball- milled strontium ferrite, Journal of magnetism and magnetic materials, vol. 177, pp. 255-256, 1998. DOI: https://doi.org/10.1016/S0304-8853(97)00910-4
W. A Kaczmarek, B. IdZikowski, and K. H Muller, “XRD and VSM study of ball milled SrFe12O19 powder “Journal of magnetism and magnetic materials, vol. 177, pp. 921-922, 1998. DOI: https://doi.org/10.1016/S0304-8853(97)00839-1
A. Sharma, O. Modi, and G. Gupta, “Effect of fuel to oxidizer ration a synthesis of alumina powder using solution combustion technique – aluminium nitrate and glycine combination,” Advances in Applied science Research, vol. 3, pp. 2151-2158, 2012.
T. Liu, L. Wang, P. Yang, and B. Hu, “Preparation of nanometer CuFe2O4 by auto combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate,” Materials Letters, vol. 62, pp. 4056-4058, 2008. DOI: https://doi.org/10.1016/j.matlet.2008.04.081
D. H Han, H. L Luo, and Z. Yang. “Remanent and anisotropic switching field distribution of platelike Ba-ferrite and acicular particulate recording media,” Journal of magnetism and magnetic materials, vol. 161, pp. 376-378, 1996. DOI: https://doi.org/10.1016/S0304-8853(96)00263-6
P. Seneor, A. Fert, J. L. Maurice, F.Montaigne, F. Petroff, and A. Vaures. “Large magnetoresistance in tunnel junctions with an iron oxide electrode,” Applied Physics Letters, vol. 74, no. 26, pp. 4017-4019, 1999. DOI: https://doi.org/10.1063/1.123246
G. Hu, and Y. Suzuki. “Negative Spin Polarization of Fe3O4 in Magnetite/Manganite-Based Junctions,” Physical review letters, vol. 89, no. 27, p. 276601, 2002. DOI: https://doi.org/10.1103/PhysRevLett.89.276601
T. P. Oliveira, G. N. Marques, M. A. Castro, R. C. Costa, J. H. Rangel, S. F. Rodrigues, C. C. dos Santos, and M. M. Oliveira. “Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light,” Journal of Materials Research and Technology, vol. 9, no. 6, pp. 15001-15015, 2020. DOI: https://doi.org/10.1016/j.jmrt.2020.10.080
S. G. Doh, E. B. Kim, B. H. Lee, and J. H. Oh. “Characteristics and synthesis of Cu–Ni ferrite nanopowders by coprecipitation method with ultrasound irradiation,” Journal of Magnetism and Magnetic Materials, vol. 272, pp. 2238-2240, 2004. DOI: https://doi.org/10.1016/j.jmmm.2003.12.926
J. Msomi, and T. Moyo. “Effect of domain transformation on the magnetic properties of CuxNi1− xFe2O4 ferrites,” Journal of magnetism and magnetic materials, vol. 321, no. 9, pp. 1246-1250, 2009. DOI: https://doi.org/10.1016/j.jmmm.2008.11.003
A. R. Lamani, H. S. Jayanna, P. Parameswara, R. Somashekar, R. Rao, and G. D. Prasanna. “Dielectric properties of poly-crystalline Cu–Zn ferrites at microwave frequencies,” Journal of Alloys and Compounds, vol. 509, no. 18, pp. 5692-5695, 2011. DOI: https://doi.org/10.1016/j.jallcom.2011.02.132
A. C Murrieta, D Cavazos-Cavazos, C Flores-Jauregui, P Sepulveda, M Hesiquio-Garduño, and F. F. Contreras-Torres. “Characterization of hydrothermally synthesized ZnFe2O4 spinel ferrite: Insights into microstructure, inversion degree, and crystal evolution,” Journal of Physics and Chemistry of Solids, vol. 183, p. 111659, 2023. DOI: https://doi.org/10.1016/j.jpcs.2023.111659
S. S. Ata-Allah. “Influence of Ga substitution on the magnetic and electric behaviour of Cu0.5Zn0. 5Fe2O4 compound,” Journal of magnetism and magnetic materials, vol. 284, pp. 227-238, 2004. DOI: https://doi.org/10.1016/j.jmmm.2004.06.041
S. Choi, and M. H. Chung. “A review on the relationship between Aloe vera components and their biologic effects,” In Seminars in integrative medicine WB Saunders, vol. 11, no. 1, pp. 53-62, 2003. DOI: https://doi.org/10.1016/S1543-1150(03)00005-X
S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nano-
particles using Aloevera plant extract,” Biotechnology progress,
vol. 22, no. 2, pp. 577-583, 2006. DOI: https://doi.org/10.1021/bp0501423
S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, and S. Maensiri. “Nanocrystalline spinel ferrite (MFe2O4, M= Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route,” Materials Research Bulletin, vol. 48, no. 6, pp. 2060-2065, 2013. DOI: https://doi.org/10.1016/j.materresbull.2013.02.042
N. Matinise, N. Botha, and IG M M. Maaza. “Mixed-phase bismuth ferrite oxide (BiFeO3) nanocomposites by green approach as an efficient electrode material for supercapacitor application,” MRS Advances. pp. 1-5, 2023. DOI: https://doi.org/10.1557/s43580-023-00603-4
N. T. Nguyen, L. M. Nguyen, T. T. Nguyen, N. H. Nguyen, D. H. Nguyen, D. T. Nguyen, and T. Van Tran. “Green synthesis of ZnFe2O4@ ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation,” Journal of Environmental Management, vol. 326, p. 116746, 2023. DOI: https://doi.org/10.1016/j.jenvman.2022.116746
Anuj Jain, Ravi Kant Baranwal, Z. Ajaya Bharti,Vakil, and C. S. Prajapati, “Study of Zn-Cu ferrite nanoparticles for LPG Sensing,” Hindawi Publishing Corporation the Scientific World Journal, pp. 1-7, 2013. DOI: https://doi.org/10.1155/2013/790359
A. Mahmood, and A. Maqsood, “Physical properties, magnetic measurements, dielectric relaxation, and complex impedance studies of cobalt-doped zinc ferrite nanoparticles,” Applied Nanoscience, vol. 11, pp. 2311-2336, 2021. DOI: https://doi.org/10.1007/s13204-021-02007-y
A. R. Denton, and N. W. Ashcroft. “Vegard’s law,” Physical review A, vol. 43, no. 6, p. 3161, 1991. DOI: https://doi.org/10.1103/PhysRevA.43.3161
V. J. Angadi, B. Rudraswamy, K. Sadhana, and K. Praveena, “Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels,” Journal of Magnetism and Magnetic Materials, vol. 409, pp. 111-115, 2016. DOI: https://doi.org/10.1016/j.jmmm.2016.02.096
R. Pena-Garcia, A. Delgado, Y. Guerra, G. Duarte, L. A. Gonçalves, and E. Padron-Hernandez, “The synthesis of single-phase yttrium iron garnet doped zinc and some structural and magnetic properties,” Materials Research Express, vol. 4, p. 016103, 2017. DOI: https://doi.org/10.1088/2053-1591/aa557a
L. Néel. “Antiferromagnetism and ferrimagnetism,” Proceedings of the Physical Society. Section, vol. 65, no. 11, p. 869, 1952. DOI: https://doi.org/10.1088/0370-1298/65/11/301
M. G. Del Muro, X. Batlle, and A. Labarta. “Erasing the glassy state in magnetic fine particles,” Physical Review B,” vol. 59, no. 21, p. 13584, 1999. DOI: https://doi.org/10.1103/PhysRevB.59.13584
P. Yaseneva, M. Bowker, and G. Hutchings. “Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method,” Physical Chemistry Chemical Physics, vol.13, no.41, pp.18609-18614 2011. DOI: https://doi.org/10.1039/c1cp21516g
A. A. Sattar, and S. A. Rahman. “Dielectric properties of rare earth substituted Cu–Zn ferrites,” physica status solidi (a), vol. 200, no. 2, pp. 415-422, 2003. DOI: https://doi.org/10.1002/pssa.200306663
C. G.Koops. “On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies,” Physical review, vol. 83, no. 1, p. 121, 1951. DOI: https://doi.org/10.1103/PhysRev.83.121
S. Upadhyay, D. Kumar, and O. M. Parkash. “Effect of composition on dielectric and electrical properties of the Sr1− xLaxTi1− xCoxO3 system,” Bulletin of Materials Science, pp. 513-525, 1996. DOI: https://doi.org/10.1007/BF02744823
E. R. Kumar, T. Arunkumar, and T. Prakash. “Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles,” Superlattices and Microstructures, vol. 85, pp. 530-535, 2015. DOI: https://doi.org/10.1016/j.spmi.2015.06.016
H. Sozeri, H. Deligoz, H. Kavas, and A. Baykal, “Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+),” Ceramics International, vol. 40, pp. 8645-8657, 2014. DOI: https://doi.org/10.1016/j.ceramint.2014.01.082
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.