Low-cost high performance sustainable triboelectric nanogenerator based on laboratory waste

Authors

  • Archana PANDA Department of Electronics and Communication Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Kunal Kumar DAS Department of Electronics and Communication Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Kushal Ruthvik KAJA Department of Physics, Vellore Institute of Technology, Vijayawada 522237, India
  • Venkataramana GANDI Department of Physics, Vellore Institute of Technology, Vijayawada 522237, India
  • Sunit Gourav MOHANTY Department of Environmental Sciences, Sambalpur University, Burla 768019, India
  • Basanta Kumar PANIGRAHI Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India

DOI:

https://doi.org/10.55713/jmmm.v35i1.2226

Keywords:

Waste materials, TENG, Energy harvesting, Wind energy

Abstract

The production of waste materials in laboratories is an unavoidable consequence of diverse experiments and activities. These materials can range from chemicals, solvents, and biological samples to electronic components, glassware, and plastics. Typically, this waste is classified into hazardous and non-hazardous categories, requiring careful disposal to avoid environmental and health risks. These can be repurposed for energy harvesting methods, such as using polymers in triboelectric nanogenerators (TENGs) or recycling metallic waste for electrodes. This approach reduces waste while advancing sustainable energy solutions. This technique demonstrates remarkable efficiency in utilizing diverse waste materials to transform various forms of mechanical energy into electricity for multiple smart applications. Herein, we have collected several laboratory wastes including used waste latex gloves, aluminium tape, and glass slides, and fabricated a single-electrode TENG which produced electrical outputs of 220 V voltage, 25 µA current, and power of 72 μW at 500 MΩ resistance. The TENG device was also used to charge various capacitors and power LED light. Finally, the TENG was used to harvest various mechanical energies from natural source like wind energy, droplet energy, various exercise activities, and body movement like speaking and drinking water. This kind of sustainable, low-cost, easy to fabricate TENG device can be very useful in various applications like sensing, and biomedical sectors.

Downloads

Download data is not yet available.

References

N. M. Ivers, and J. M. Grimshaw, "Reducing research waste with implementation laboratories," The Lancet, vol. 388, no. 10044, pp. 547-548, 2016. DOI: https://doi.org/10.1016/S0140-6736(16)31256-9

A.-H. El-Gilany, S. El-shaer, E. Khashaba, S. El-Dakroory, and N. Omar, "Knowledge, attitude, and practice (KAP) of ‘teaching laboratory’ technicians towards laboratory safety and waste management: A pilot interventional study," Journal of Hospital Infection, vol. 96, no. 2, pp. 192-194, 2017. DOI: https://doi.org/10.1016/j.jhin.2017.02.007

M. A. Urbina, A. J. Watts, and E. E. Reardon, "Labs should cut plastic waste too," Nature, vol. 528, no. 7583, pp. 479-479, 2015. DOI: https://doi.org/10.1038/528479c

M. L. Tan, C. K. Ying, and S. B. S. Hamid, "Plastic pollution and sustainable managing of single-use laboratory plastic waste," Sustainability and Climate Change, vol. 15, no. 1, pp. 6-16, 2022. DOI: https://doi.org/10.1089/scc.2021.0050

J. Alves, F. Sargison, H. Stawarz, W. B. Fox, S. G. Huete, A. Hassan, B. Mc. Teir, and A. C. Pickering, "A case report: insights into reducing plastic waste in a microbiology laboratory," Access microbiology, vol. 3, no. 3, p. 000173, 2021. DOI: https://doi.org/10.1099/acmi.0.000173

R. Kothari, V. V. Tyagi, and A. Pathak, "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp. 3164-3170, 2010. DOI: https://doi.org/10.1016/j.rser.2010.05.005

M. T. Chin, and T. Diao, "Industrial and laboratory technologies for the chemical recycling of plastic waste," ACS catalysis, vol. 14, no. 16, pp. 12437-12453, 2024. DOI: https://doi.org/10.1021/acscatal.4c03194

M. Sadri, P. Smith, S. Spears, J. Perkins, C. Dewitt, S. Savannah, C. Butler, and Z. Qiang, "Hands-on laboratory experiments for demonstrating mixed plastic recycling," Journal of Chemical Education, vol. 100, no. 1, pp. 321-326, 2022. DOI: https://doi.org/10.1021/acs.jchemed.2c00702

G. Prasad, J. U. Yoon, I. Woo, and J. W. Bae, "Fabrication of amino and fluorine functionalized graphene-based polymer composites to enhance the electromechanical conversion efficiency of TENGs for energy-harvesting applications," Chemical Engineering Journal, vol. 470, p. 144280, 2023. DOI: https://doi.org/10.1016/j.cej.2023.144280

B.-K. Lee, M. J. Ellenbecker, and R. Moure-Eraso, "Analyses of the recycling potential of medical plastic wastes," Waste management, vol. 22, no. 5, pp. 461-470, 2002. DOI: https://doi.org/10.1016/S0956-053X(02)00006-5

T. S. Singh, T. N. Verma, and H. N. Singh, "A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: Engine emissions testing study," Fuel, vol. 277, p. 118176, 2020. DOI: https://doi.org/10.1016/j.fuel.2020.118176

R. Muddamalla, M. Navaneeth, A. A. Sharma, P. P. Pradhan, K. A. K. D. Prasad, U. K. Khanapuram, R. R. Kumar, and H. Divi, "Phosphor-Based triboelectric nanogenerators for mechanical energy harvesting and self-powered systems," ACS Applied Electronic Materials, vol. 6, no. 3, pp. 1821-1828, 2024. DOI: https://doi.org/10.1021/acsaelm.3c01728

M. Niharika, R. Garlapallya, K. Ruthvik, M. Velaga, and B. M. Rao, "Hydrogen production on g-C3N4 nanoflakes via photo-electrochemical water splitting," Materials Today: Proceedings, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.06.188

A. Panda, K. K. Das, K. R. Kaja, M. Belal, and B. K. Panigrahi, "Single electrode mode triboelectric nanogenerator for recognition of animal sounds," Journal of Metals, Materials and Minerals, vol. 34, no. 4, pp. 2170-2170, 2024. DOI: https://doi.org/10.55713/jmmm.v34i4.2170

J. Luo, and Z. L. Wang, "Recent progress of triboelectric nano-generators: From fundamental theory to practical applications," EcoMat, vol. 2, no. 4, p. e12059, 2020. DOI: https://doi.org/10.1002/eom2.12059

S. Hajra, S. Panda, H. Khanberh, V. Vivekananthan, E. Chamanehpour, Y. K. Mishra, and H. J. Kim, "Revolutionizing self-powered robotic systems with triboelectric nanogenerators," Nano Energy, vol. 115, p. 108729, 2023. DOI: https://doi.org/10.1016/j.nanoen.2023.108729

S. A. Behera, S. Hajra, S. Panda, A. K. Sahu, P. Alagarsamy, Y. K. Mishra, H. J. Kim, and P. G. R. Achary, "Synergistic energy harvesting and humidity sensing with single electrode triboelectric nanogenerator," Ceramics International, vol. 50, no. 19, Part B, pp. 37193-37200, 2024. DOI: https://doi.org/10.1016/j.ceramint.2024.07.110

N. Kim, S. Hwang, S. Panda, S. Hajra, J. Jo, H. Song, M. A. Belal, V. Vivekananthan, B. K. Panigrahi, P. G. R. Achary, and H. J. Kim, "A sustainable free-standing triboelectric nanogenerator made of flexible composite film for brake pattern recognition in automobiles," Macromolecular Rapid Communications, vol. 45, no. 20, p. e2400431, 2024. DOI: https://doi.org/10.1002/marc.202400431

S. Nuthalapati, A. Chakraborthy, I. Arief, K. K. Meena, K. R. Kaja, R. R. Kumar, U. K. Khanapuram, A. Das, M. E. Altinsoy, and A. Nag, "Wearable high-performance MWCNTs/ PDMS nanocomposite based triboelectric nanogenerators for haptic applications," IEEE Journal on Flexible Electronics, vol. 3, no. 99, pp. 1-1, 2024. DOI: https://doi.org/10.1109/JFLEX.2024.3446756

W. Akram, Q. Chen, G. Xia, and J. Fang, "A review of single electrode triboelectric nanogenerators," Nano Energy, vol. 106, p. 108043, 2023. DOI: https://doi.org/10.1016/j.nanoen.2022.108043

Y. Mao, D. Geng, E. Liang, and X. Wang, "Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires," Nano Energy, vol. 15, pp. 227-234, 2015. DOI: https://doi.org/10.1016/j.nanoen.2015.04.026

S. Panda, S. Hajra, H-G. Kim, H. Jeong, S. Hong, P. G. R. Achary, B. Dudem, S. R. P. Silva, V. Vivekananthan, and H. J. Kim, "Carbohydrate–protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor," Journal of Materials Chemistry B, vol. 11, no. 42, pp. 10147-10157, 2023. DOI: https://doi.org/10.1039/D3TB01820B

J. A. L. Jayarathna, and K. R. Kaja, "Energy-harvesting device based on lead-free perovskite," AI, Computer Science and Robotics Technology, vol. 3, 2024. DOI: https://doi.org/10.5772/acrt.20240036

W. He, M. Sohn, R. Ma, and D. J. Kang, "Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors," Nano Energy, vol. 78, p. 105383, 2020. DOI: https://doi.org/10.1016/j.nanoen.2020.105383

C. Ning, L. Tian, X. Zhao, S. Xiang, Y. Tang, L. Er-Jun, and Y. Mao, "Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics," Journal of Materials Chemistry A, vol. 6, no. 39, pp. 19143-19150, 2018. DOI: https://doi.org/10.1039/C8TA07784C

W. Oh, S. Hajra, S. Divya, S. Panda, Y. Oh, Z. Jaglic, P. Pakawanit, T. H. Oh, and H. J. Kim, "Contact electrification of porous PDMS-nickel ferrite composites for effective energy harvesting," Materials Science and Engineering: B, vol. 292, p. 116397, 2023. DOI: https://doi.org/10.1016/j.mseb.2023.116397

B. Mahale, N. Kumar, R. Pandey, and R. Ranjan, "High power density low-lead-piezoceramic–polymer composite energy harvester," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 4, pp. 789-796, 2019. DOI: https://doi.org/10.1109/TUFFC.2019.2892974

K. Ruthvik, A. Babu, P. Supraja, M. Navaneeth, V. Mahesh, K. U. Kumar, R. R. Kumar, B. M. Rao, D. Haranath, and K. Prakash, "High-performance triboelectric nanogenerator based on 2D graphitic carbon nitride for self-powered electronic devices," Materials Letters, vol. 350, p. 134947, 2023. DOI: https://doi.org/10.1016/j.matlet.2023.134947

U. K. Khanapuram, S. Hajra, G. M. Rani, S. Panda, R. Umapathi, S. Venkateswarlu, H. J. Kim, Y. K. Mishra, and R. R. Kumar, "Revolutionizing waste-to-energy: harnessing the power of triboelectric nanogenerators," Advanced Composites and Hybrid Materials, vol. 7, no. 3, p. 91, 2024. DOI: https://doi.org/10.1007/s42114-024-00903-9

A. A. Ahmed, T. F. Qahtan, T. O. Owolabi, A. O. Agunloye, M. Rashid, and M. S. M. Ali, "Waste to sustainable energy based on TENG technology: A comprehensive review," Journal of Cleaner Production, vol. 448, no. 14, p. 141354, 2024. DOI: https://doi.org/10.1016/j.jclepro.2024.141354

A. Babu, K. R. Kaja, S. Potu, M. Navaneeth, U. K. Khanapuram, R. R. Kumar, K. Prakash, and R. Nagapuri, "High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting," Journal of Materials Science: Materials in Electronics, vol. 34, no. 33, p. 2195, 2023. DOI: https://doi.org/10.1007/s10854-023-11644-8

M. Sahu, S. Hajra, S. Panda, P. S. M. Rajaitha, B. K. Panigrahi, H-G. Rubahn, Y. K. Mishra, and H. J. Kim, "Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics," Nano Energy, vol. 97, p. 107208, 2022. DOI: https://doi.org/10.1016/j.nanoen.2022.107208

S. Panda, S. Hajra, H-G. Kim, P. G. R. Achary, P. Pakawanit, Y. Yang, Y. K. Mishra, and H. J. Kim, "Sustainable Solutions for oral health monitoring: Biowaste-derived triboelectric nano-generator," ACS Applied Materials & Interfaces, vol. 15, no. 30, pp. 36096-36106, 2023. DOI: https://doi.org/10.1021/acsami.3c04024

M. Sahu, S. Hajra, H.-G. Kim, H.-G. Rubahn, Y. Kumar Mishra, and H. J. Kim, "Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications," Nano Energy, vol. 88, p. 106255, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.106255

Published

2025-02-21

How to Cite

[1]
A. PANDA, K. K. DAS, K. R. KAJA, V. GANDI, S. G. MOHANTY, and B. K. PANIGRAHI, “Low-cost high performance sustainable triboelectric nanogenerator based on laboratory waste”, J Met Mater Miner, vol. 35, no. 1, p. e2226, Feb. 2025.

Issue

Section

Original Research Articles

Categories

Most read articles by the same author(s)