A top-electrode-based liquid-solid triboelectric nanogenerator for energy harvesting and ethanol detection

Authors

  • Subrat BHOL Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Nakul Charan SAHU Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Sunit Gaurav MOHANTY Department of Environmental Sciences, Sambalpur University, Burla 768019, India
  • Vicky Raj MADDALA Department of Physics, Andhra Loyola College, Vijayawada, 520008, India
  • Basanta Kumar PANIGRAHI Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Premkumar Bhosale School of Nanoscience & Technology, Shivaji University, Kolhapur 416004, India.

DOI:

https://doi.org/10.55713/jmmm.v36i1.2600

Keywords:

liquid-solid, energy harvesting, ethanol detection

Abstract

Liquid-solid triboelectric nanogenerators (LS-TENGs) offer a promising avenue for self-powered energy harvesting and sensing by exploiting contact electrification at fluid-dielectric interfaces, where droplet dynamics drive charge separation for electrical output without external power. In this work, a top-electrode LS-TENG was fabricated using a polytetrafluoroethylene (PTFE) film on a PMMA substrate with deionised water droplets, achieving an open-circuit voltage of ‒3.4 V, short-circuit current of 3.6 μA, and peak power of 1.48 nW at 100 MΩ under optimised conditions of 2 cm drop height, 45° tilt, and 50 μL volume. Performance scaled with droplet kinetics and volume due to enhanced contact area and charge transfer, while stability persisted over repeated cycles, and ethanol-water mixtures distinctly modulated outputs via reduced permittivity and wettability, enabling sensitive, battery-free detection for practical applications in environmental monitoring.

 

Downloads

Download data is not yet available.

References

M. A. Belal, S. Hajra, S. Panda, K. R. Kaja, K. J. Park, R. Jana, P. G. R. Achary, and H. J. Kim, "Functionalized MWCNTs@ ZnO nanocomposites via spray printing for NO2 gas sensing," Journal of Materials Science: Materials in Electronics, vol. 36, no. 12, p. 750, 2025. DOI: https://doi.org/10.1007/s10854-025-14663-9

K. Xia, and M. Yu, "Highly robust and efficient metal-free water cup solid–liquid triboelectric nanogenerator for water wave energy harvesting and ethanol detection," Chemical Engineering Journal, vol. 503, p. 157938, 2025. DOI: https://doi.org/10.1016/j.cej.2024.157938

L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection," Sensors and Actuators B: Chemical, vol. 162, no. 1, pp. 237-243, 2012. DOI: https://doi.org/10.1016/j.snb.2011.12.073

L. Pan, J. Wang, P. Wang, R. Gao, Y-C. Wang, X. Zhang, J-J. Zou, and Z. L. Wang, "Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy," Nano Research, vol. 11, no. 8, pp. 4062-4073, 2018. DOI: https://doi.org/10.1007/s12274-018-1989-9

M. A. Belal, S. Hajra, S. Panda, K. R. Kaja, A. A. E. Moneim, P. G. R. Achary, and H. J. Kim, "Mechanochemically synthesized ZIF-8@ ZnO composite-based NO2 gas detection," New Journal of Chemistry, vol. 49, no. 42, pp. 18436-18446, 2025. DOI: https://doi.org/10.1039/D5NJ02514A

S. H. S. Pai, R. Yeasmin, R. B. Ali, R. Samyugdhanayaki, G. Mohapatra, Q. A. Sial, A. S. Khan, and H. Seo, "Dual-platform chemochromic sensor for low concentration hydrogen gas detection using Y2O3/Pd nanocomposite-incorporated functional polymer: An experiment and DFT approach," Sensors and Actuators B: Chemical, vol. 450, p. 139230, 2025. DOI: https://doi.org/10.1016/j.snb.2025.139230

Y. Shi, X. Li, X. Sun, X. Shao, and H. Wang, "Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detection," Journal of Alloys and Compounds, vol. 963, p. 171190, 2023. DOI: https://doi.org/10.1016/j.jallcom.2023.171190

M. A. Belal, S. Hajra, S. Panda, K. R. Kaja, M. Magdy, A. A. E. Moneim, D. Janas, Y. K. Mishra, and H. J. Kim, "Advances in gas sensors using screen printing," Journal of Materials Chemistry A, vol. 13, no. 8, pp. 5447-5497, 2025. DOI: https://doi.org/10.1039/D4TA06632D

S. H. S. Pai, A. Mondal, B. Ajitha, and Y. A. K. Reddy, "Effect of calcination temperature on NiO for hydrogen gas sensor performance," International Journal of Hydrogen Energy, vol. 50, pp. 928-941, 2024. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.345

S. He, Y. Gui, Y. Wang, L. Cao, G. He, and C. Tang, "CuO/TiO2/ MXene-based sensor and SMS-TENG array integrated inspection robots for self-powered ethanol detection and alarm at room temperature," ACS sensors, vol. 9, no. 3, pp. 1188-1198, 2024. DOI: https://doi.org/10.1021/acssensors.3c01963

Z. H. Lin, G. Zhu, Y. S. Zhou, Y. Yang, P. Bai, J. Chen, and Z. L. Wang, "A self-powered triboelectric nanosensor for mercury ion detection," Angewandte Chemie International Edition, vol. 52, no. 19, 2013. DOI: https://doi.org/10.1002/anie.201300437

Z. H. Lin, G. Cheng, L. Lin, S. Lee, and Z. L. Wang, "Water-solid surface contact electrification and its use for harvesting liquid-wave energy," Angewandte Chemie, vol. 125, no. 48, 2013. DOI: https://doi.org/10.1002/ange.201307249

K. R. Kaja, S. Hajra, S. Panda, M. A. Belal, U. Pharino, H. Khanbareh, N. Vittayakorn, V. Vivekananthan, C. R. Bown, and H. J. Kim, "Exploring liquid-solid interface based tribo-electrification, structures, and applications," Nano Energy, vol. 131, p. 110319, 2024. DOI: https://doi.org/10.1016/j.nanoen.2024.110319

R. Muddamalla, M. Navaneeth, A. A. Sharma, P. P. Pradhan, K. A. K. D. Prasad, U. K. Khanapuram, R. R. Kumar, and H. Divi, "Phosphor-based triboelectric nanogenerators for mechanical energy harvesting and self-powered systems," ACS Applied Electronic Materials, vol. 6, no. 3, pp. 1821-1828, 2024. DOI: https://doi.org/10.1021/acsaelm.3c01728

S. Mishra, M. Rakshita, H. Divi, S. Potu, and R. K. Rajaboina, "Unique contact point modification technique for boosting the performance of a triboelectric nanogenerator and its application in road safety sensing and detection," ACS Applied Materials & Interfaces, vol. 15, no. 27, pp. 33095-33108, 2023. DOI: https://doi.org/10.1021/acsami.3c04848

A. Panda, K. K. Das, K. R. Kaja, V. Gandi, S. G. Mohanty, and B. K. Panigrahi, "Low-cost high performance sustainable triboelectric nanogenerator based on laboratory waste," Journal of Metals, Materials and Minerals, vol. 35, no. 1, p. e2226, 2025. DOI: https://doi.org/10.55713/jmmm.v35i1.2226

Z. Nan, G. Haojie, K. Lu, S. Ye, W. Xu, H. Zheng, Y. Song, C. Liu, J. Jiao, Z. Wang, and X. Zhou, "A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting," Nano Energy, vol. 82, p. 105735, 2021. DOI: https://doi.org/10.1016/j.nanoen.2020.105735

U. Pharino, K. Chaithaweep, S. Pongampai, N. Chanlek, S. Kothan, J. Kaewkhoo, S. Hajra, H. J. Kim, W. Vittayakorn, S. Sriphan, and N. Vittayakorn, "A highly sensitive disease pre-screening approach for glycosuria: Triboelectric sensing at the liquid-solid interface," Chemical Engineering Journal, vol. 508, p. 160901, 2025. DOI: https://doi.org/10.1016/j.cej.2025.160901

T. Charoonsuk, R. Muanghlua, S. Sriphan, S. Pongampai, and N. Vittayakorn, "Utilization of commodity thermoplastic poly-ethylene (PE) by enhanced sensing performance with liquid phase electrolyte for a flexible and transparent triboelectric tactile sensor," Sustainable Materials and Technologies, vol. 27, p. e00239, 2021. DOI: https://doi.org/10.1016/j.susmat.2020.e00239

S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee, H. Shin, V. Vivekananthan, Y. Yang, Y. K. Mishra, and H. J. Kim, "Hybrid nanogenerators for ocean energy harvesting: Mechanisms, designs, and applications," Small, vol. 19, no. 25, p. 2300847, 2023. DOI: https://doi.org/10.1002/smll.202300847

J. A. L. Jayarathna, and K. R. Kaja, "Energy-harvesting device based on lead-free perovskite," AI, Computer Science and Robotics Technology, vol. 3, no. 1, pp. 1-9, 2024. DOI: https://doi.org/10.5772/acrt.20240036

K. R. Kaja, S. Hajra, S. Panda, M. A. Belal. S. Nam, P. Pakawanit, B. K. Panigrahi, H. Khanbareh, C. R. Bowen, J. Yu, and H. J. Kim, "Waste polyethylene-coated fabrics for dual-mode interfaces triboelectrification for self-powered sensors," Results in Engineering, vol. 28, p. 107111, 2025. DOI: https://doi.org/10.1016/j.rineng.2025.107111

K. R. Kaja, S. Hajra, S. Panda, M. A. Belal. P. Pakawanit, N. Vittayakorn, C. R. Bowen, H. Khanbareh, and H. J. Kim, "Triboelectrification based on the waste waterproof textiles for multisource energy harvesting," Advanced Sustainable Systems, vol. 9, no. 5, p. 2400678, 2025. DOI: https://doi.org/10.1002/adsu.202400678

K. Chaithaweep, U. Pharino, S. Pongampai, S. Hajra, H. J. Kim, T. Charoonsuk, T. Maluangnont, S. Sriphan, and N. Vittayakorn, "High‐performance droplet‐based triboelectric nanogenerators: A comparison of device configuration and operating parameters," Advanced Materials Technologies, vol. 10, no. 9, p. 2401870, 2025. DOI: https://doi.org/10.1002/admt.202401870

Downloads

Published

2026-02-06

How to Cite

[1]
S. . BHOL, N. C. . SAHU, S. G. . MOHANTY, V. R. . MADDALA, B. K. . PANIGRAHI, and P. Bhosale, “A top-electrode-based liquid-solid triboelectric nanogenerator for energy harvesting and ethanol detection”, J Met Mater Miner, vol. 36, no. 1, p. e2600, Feb. 2026.

Issue

Section

Original Research Articles

Categories

Most read articles by the same author(s)