Utilization of RHA in development of hybrid composite by electromagnetic stir casting technique using RSM

Authors

  • Shashi Prakash Dwivedi G. L. Bajaj Institute of Technology & Management, Greater Noida, Gautam Buddha Nagar
  • Garima Dwivedi Kunwar Satya VIRA Group of Institutions, Bijnor

DOI:

https://doi.org/10.55713/jmmm.v29i4.538

Keywords:

RHA, B4C CCD, desirability, electromagnetic stirring

Abstract

In the present investigation, hybrid metal matrix composite was developed using electromagnetic stir casting technique. AA2024 alloy was used as matrix material. RHA (rice husk ash) was used as primary reinforcement material, while B4C (boron carbide) was used as secondary reinforcement material. CCD (central composite design) was employed to develop design matrix table for fabrication of hybrid composite by electromagnetic stir casting technique. Microstructure result showed uniform distribution of RHA and B4C in matrix material. Ramp function graph showed that when RHA preheat temperature, RHA weight percentage, Electromagnetic stirring time, B4C preheat temperature and B4C wt.% are 272.57°C, 12.5%, 180 s, 312.38°C and 12.5% respectively then the optimum value of tensile strength of composite was found to be 258.498 MPa with desirability 0.958. Hardness, toughness and ductility were also observed at optimum electromagnetic stir casting parameters.

Downloads

Download data is not yet available.

References

A. Ahmadi, M. R. Toroghinejad, and A. Najafizadeh, “Evaluation of Microstructure and Mechanical Properties of Al/Al2O3/SiC Hybrid Composite Fabricated by Accumulative Roll Bonding Process,” Materials & Design, vol. 53, pp. 13-19, 2014. DOI: https://doi.org/10.1016/j.matdes.2013.06.064

A. Devaraju, A. Kumar, A. Kumaraswamy, and B. Kotiveerachari, “Influence of Reinforcements (SiC and Al2O3) and Rotational Speed on Wear and Mechanical Properties of Aluminum Alloy 6061-T6 based Surface Hybrid Composites Produced via Friction Stir Processing,” Materials&Design, vol. 51, pp. 331-341, 2013. DOI: https://doi.org/10.1016/j.matdes.2013.04.029

P. K. Rohatgi, J. K. Kim, N. Gupta, Simon Alaraj, and A. Daoud, “Compressive Characteristics of A356/Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique,” Composites: Part A, vol. 37, pp. 430-437, 2006. DOI: https://doi.org/10.1016/j.compositesa.2005.05.047

N. Verma and S. C. Vettivel, “Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite,” Journal of Alloys and Compounds, vol. 741, pp. 981-998, 2018. DOI: https://doi.org/10.1016/j.jallcom.2018.01.185

J. A. Kingsly Gladston, N. Mohamedsheriff, I. Dinaharan, and J. D. Selvam, “Production and characterization of rich husk ash particulate reinforced AA6061 aluminum alloy composites by compocasting,” Transactions of Nonferrous Metals Society of China, vol. 25, pp. 683-691, 2015. DOI: https://doi.org/10.1016/S1003-6326(15)63653-6

Casting Routes,” Composites Science and Technology, Vol. 67, pp.3369-3377, 2007. DOI: https://doi.org/10.1016/j.compscitech.2007.03.028

R. Rahmani Fard and F. Akhlaghi, “Effect of Extrusion Temperature on the Microstructure and Porosity of A356-Sicp Composites,” Journal of Materials Processing Technology, vol. 187-188, pp. 433-436, 2007. DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.077

K. Sudarshan and M. K. Surappa, “Dry Sliding Wear of Fly Ash Particle Reinforced A356 Al Composites,” Wear, vol. 265, pp. 349-360, 2008. DOI: https://doi.org/10.1016/j.wear.2007.11.009

A. Cetin and A. Kalkanli, “Effect of Solidification Rate on Spatial Distribution of SiC Particles in A356 Alloy Composites,” Journal of Materials Processing and Technology, vol. 205, pp. 1-8, 2008. DOI: https://doi.org/10.1016/j.jmatprotec.2007.11.065

M. K. Naskar, D. Kundu, and M. Chatterjee, “Coral-like hydroxy sodalite particles from rice husk ash as silica source.” Materials Letters, vol. 65, pp. 3408-3410, 2011. DOI: https://doi.org/10.1016/j.matlet.2011.07.084

R. Khan, A. Jabbar, I. Ahmad, W. Khan, A. N. Khan, and J. Mirza, “Reduction in environmental problems using rice-husk ash in concrete”, Construction and Building Materials, vol. 30, pp. 360-365, 2012. DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.028

S. P. Dwivedi and V. R. Mishra, “Physicochemical, Mechanical and Thermal Behaviour of Agro Waste RHA Reinforced Green Emerging Composite Material”, Arabian Journal for Science and Engineering, 2019, DOI: https://doi.org/10.1007/s13369-019-03784-z. DOI: https://doi.org/10.1007/s13369-019-03784-z

S. S. Rehman, W. Ji, S. A. Khan, M. Asif, Z. Fu, W. Wang, H. Wang, J. Zhang, and Y. Wang, “Microstructure and mechanical properties of B4C based ceramics with Fe3Al as sintering aid by spark plasma sintering”, Journal of the European Ceramic Society, vol. 34, pp. 2169- 2175, 2014. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.02.014

M. S. Heydari, H. R. Baharvandi, and S. R. Allahkaram, “Electroless nickel-boron coating on B4C-Nano TiB2 composite powders”, International Journal of Refractory Metals and Hard Materials, vol. 76, pp. 58-71, 2018. DOI: https://doi.org/10.1016/j.ijrmhm.2018.05.012

N. N. Greenwood and A. Earnshaw, “Chemistry of the Elements (2nd ed.)”, Butterworth-Heinemann. p. 149, 1997, ISBN 978-0-08-037941-8.

P. Mukerjee, “Crop Burning: Punjab and Haryana’s killer fields,” 2016, https://www. downtoearth.org.in/news/air/crop-burning-punjabharyana-s-killer-fields-55960

Downloads

Published

2019-12-26

How to Cite

[1]
S. P. Dwivedi and G. . Dwivedi, “Utilization of RHA in development of hybrid composite by electromagnetic stir casting technique using RSM”, J Met Mater Miner, vol. 29, no. 4, Dec. 2019.

Issue

Section

Original Research Articles