Realizing fast plating/stripping of high-performance Zn metal anode with a low Zn loading

Authors

  • Zhuo LI Key Laboratory of Superlight Material and Surface Technology of Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University 145 Nantong Street, Harbin 150001, P. R. China
  • Tamene Tadesse BEYENE Department of Chemistry, College of Natural Sciences, Jimma University, P.O.Box 378, Jimma-Ethiopia
  • Kai ZHU Key Laboratory of Superlight Material and Surface Technology of Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University 145 Nantong Street, Harbin 150001, P. R. China
  • Dianxue CAO Key Laboratory of Superlight Material and Surface Technology of Ministry of Education College of Material Science and Chemical Engineering, Harbin Engineering University 145 Nantong Street, Harbin 150001, P. R. China

DOI:

https://doi.org/10.55713/jmmm.v34i2.2009

Keywords:

Aqueous battery, Energy storage, Flexible interface, 3D current collector, Zn metal anode

Abstract

Zn metal batteries and capacitors (ZMBs/ZMCs) are gaining significant attention due to their low cost, high safety, and high theoretical capacity. However, the low utilization of Zn metal decreases the coulombic efficiency. Here, we present a novel approach to enhance the conductivity of host materials by utilizing a 3D conductive structural network of copper mesh. The 3D copper mesh serves as a high-conductive matrix and additionally coating it with Zn serves as a Zn source. Finally, a flexible reduced graphene oxide (rGO) was deposited on the Zn-coated copper mesh as an anode protective layer. The conductive copper mesh renders a fast plating/stripping of Zn and enables more contact of Zn with the electrolyte. The flexible rGO film deposited on Zn-coated copper mesh alleviates the local charge accumulation and inhibits corrosion. As a result, the Zn-coated copper mesh anode modified with rGO (RCZ) exhibited a longer lifespan of 200 h than the Zn-coated planar copper foil anode which cycled only for 30 h. The RCZ||AC full capacitor obtained high capacity retention of 97.9% after 9000 times cycling. The RCZ anode integrates the merits of 3D structure matrix and rGO realizing a dual-functionalized Zn metal anode. The conductive matrix strategy sheds light on other metal batteries.

Downloads

Download data is not yet available.

References

C. Li, A. Shyamsunder, A. G. Hoane, D. M. Long, C. Y. Kwok, P. G. Kotula, K. R. Zavadil, A. A. Gewirth, and L. F. Nazar, "Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry," Joule, vol. 6, pp. 1103-1120, 2022.

S. D. Pu, B. K. Hu, Z. X. Li, Y. Yuan, C. Gong, Z. Y. Ning, C. Chau, S. X. Yang, S. M. Zhang, L. Q. Pi, Y. T. Tang, J. L. Yue, T. J. Marrow, X. W. Gao, P. G. Bruce, and A. W. Robertson, "Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries," Joule, vol. 7, pp. 366-379, 2023.

M. L. Wu, Y. Zhang, L. Xu, C. P. Yang, M. Hong, M. J. Cui, B. C. Clifford, S. M. He, S. S. Jing, Y. Yao, and L. B. Hu, 1. C. Li, A. Shyamsunder, A. G. Hoane, D. M. Long, C. Y. Kwok, P. G. Kotula, K. R. Zavadil, A. A. Gewirth, and L. F. Nazar, "Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry," Joule, vol. 6, pp. 1103-1120, 2022.

S. D. Pu, B. K. Hu, Z. X. Li, Y. Yuan, C. Gong, Z. Y. Ning, C. Chau, S. X. Yang, S. M. Zhang, L. Q. Pi, Y. T. Tang, J. L. Yue, T. J. Marrow, X. W. Gao, P. G. Bruce, and A. W. Robertson, "Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries," Joule, vol. 7, pp. 366-379, 2023.

M. L. Wu, Y. Zhang, L. Xu, C. P. Yang, M. Hong, M. J. Cui, B. C. Clifford, S. M. He, S. S. Jing, Y. Yao, and L. B. Hu, "A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries," Matter, vol. 5, pp. 3402-3416, 2022.

Y. X. Zeng, D. Y. Luan, and X. W. Lou, "Recent advances in electrode engineering strategies for aqueous Zn-based batteries," Chem, vol. 9, pp. 1118-1146, 2023.

B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim, J. Y. Hwang, H. J. Fan, and J. Kim, "An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries," Chem, vol. 8, pp. 924-946, 2022.

A. Naveed, H. J. Yang, J. Yang, Y. N. Nuli, and J. L. Wang, "Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte," Angewandte Chemie International Edition, vol. 58, pp. 2760-2764, 2019.

P. Hei, Y. Sai, C. Liu, W. J. Li, J. Wang, X. Q. Sun, Y. Song, and X. X. Liu, "Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries," Angewandte Chemie International Edition, vol. 136, no. 9, 2024.

J. Zhi, S. K. Li, M. Han and P. Chen, "Biomolecule-guided cation regulation for dendrite-free metal anodes," Science Advances, vol. 6, no. 32, 2020.

N. N. Zhang, S. Huang, Z. S. Yuan, J. C. Zhu, Z. F. Zhao and Z. Q. Niu, "Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries," Angewandte Chemie International Edition, vol. 60, pp. 2861-2865, 2021.

L. T. Kang, M. W. Cui, F. Y. Jiang, Y. F. Gao, H. J. Luo, J. J. Liu, W. Liang, and C. Y. Zhi, "Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries," Advanced Energy Materials, vol. 8, pp., 2018.

W. T. Yuan, X. Y. Nie, Y. Y. Wang, X. T. Li, G. Q. Ma, Y. Wang, S. G. Shen, and N. Zhang, "Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries," Acs Nano, vol. 17, pp. 23861-23871, 2023.

G. N. Qian, G. B. Zan, J. Z. Li, S. J. Lee, Y. Wang, Y. Y. Zhu, S. Gul, D. J. Vine, S. Lewis, W. B. Yun, Z. F. Ma, P. Pianetta, J. S. Lee, L. S. Li, and Y. J. Liu, "Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery," Advanced Energy Materials, vol. 12, pp., 2022.

Q. Zhao, S. Stalin, and L. A. Archer, "Stabilizing metal battery anodes through the design of solid electrolyte interphases," Joule, vol. 5, pp. 1119-1142, 2021.

J. N. Hao, B. Li, X. L. Li, X. H. Zeng, S. L. Zhang, F. H. Yang, S. L. Liu, D. Li, C. Wu, and Z. P. Guo, "An in-depth study of zn metal surface chemistry for advanced aqueous Zn-ion batteries," Advanced Materials, vol. 32, pp., 2020.

Y. J. Wang, N. Li, H. Y. Liu, J. Shi, Y. Q. Li, X. K. Wu, Z. Wang, C. Huang, K. Y. Chen, D. B. Zhang, T. Y. Wu, P. Li, C. X. Liu, and L. W. Mi, ""Zincophilic-hydrophobic" PAN/ PMMA nanofiber membrane toward high-rate dendrite-free Zn anode," Advanced Fiber Materials, vol. 5, pp. 2002-2015, 2023.

M. H. Zhang, J. H. Li, Y. W. Tang, D. W. Wang, H. S. Hu, M. T. Liu, B. Xiao, and P. F. Wang, "Selective Zn-ion channels 1. C. Li, A. Shyamsunder, A. G. Hoane, D. M. Long, C. Y. Kwok, P. G. Kotula, K. R. Zavadil, A. A. Gewirth, and L. F. Nazar, "Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry," Joule, vol. 6, pp. 1103-1120, 2022.

S. D. Pu, B. K. Hu, Z. X. Li, Y. Yuan, C. Gong, Z. Y. Ning, C. Chau, S. X. Yang, S. M. Zhang, L. Q. Pi, Y. T. Tang, J. L. Yue, T. J. Marrow, X. W. Gao, P. G. Bruce, and A. W. Robertson, "Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries," Joule, vol. 7, pp. 366-379, 2023.

M. L. Wu, Y. Zhang, L. Xu, C. P. Yang, M. Hong, M. J. Cui, B. C. Clifford, S. M. He, S. S. Jing, Y. Yao, and L. B. Hu, "A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries," Matter, vol. 5, pp. 3402-3416, 2022.

Y. X. Zeng, D. Y. Luan, and X. W. Lou, "Recent advances in electrode engineering strategies for aqueous Zn-based batteries," Chem, vol. 9, pp. 1118-1146, 2023.

B. Sambandam, V. Mathew, S. Kim, S. Lee, S. Kim, J. Y. Hwang, H. J. Fan, and J. Kim, "An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries," Chem, vol. 8, pp. 924-946, 2022.

A. Naveed, H. J. Yang, J. Yang, Y. N. Nuli, and J. L. Wang, "Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte," Angewandte Chemie International Edition, vol. 58, pp. 2760-2764, 2019.

P. Hei, Y. Sai, C. Liu, W. J. Li, J. Wang, X. Q. Sun, Y. Song, and X. X. Liu, "Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries," Angewandte Chemie International Edition, vol. 136, no. 9, 2024.

J. Zhi, S. K. Li, M. Han and P. Chen, "Biomolecule-guided cation regulation for dendrite-free metal anodes," Science Advances, vol. 6, no. 32, 2020.

N. N. Zhang, S. Huang, Z. S. Yuan, J. C. Zhu, Z. F. Zhao and Z. Q. Niu, "Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries," Angewandte Chemie International Edition, vol. 60, pp. 2861-2865, 2021.

L. T. Kang, M. W. Cui, F. Y. Jiang, Y. F. Gao, H. J. Luo, J. J. Liu, W. Liang, and C. Y. Zhi, "Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries," Advanced Energy Materials, vol. 8, pp., 2018.

W. T. Yuan, X. Y. Nie, Y. Y. Wang, X. T. Li, G. Q. Ma, Y. Wang, S. G. Shen, and N. Zhang, "Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries," Acs Nano, vol. 17, pp. 23861-23871, 2023.

G. N. Qian, G. B. Zan, J. Z. Li, S. J. Lee, Y. Wang, Y. Y. Zhu, S. Gul, D. J. Vine, S. Lewis, W. B. Yun, Z. F. Ma, P. Pianetta, J. S. Lee, L. S. Li, and Y. J. Liu, "Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery," Advanced Energy Materials, vol. 12, pp., 2022.

Q. Zhao, S. Stalin, and L. A. Archer, "Stabilizing metal battery anodes through the design of solid electrolyte interphases," Joule, vol. 5, pp. 1119-1142, 2021.

J. N. Hao, B. Li, X. L. Li, X. H. Zeng, S. L. Zhang, F. H. Yang, S. L. Liu, D. Li, C. Wu, and Z. P. Guo, "An in-depth study of zn metal surface chemistry for advanced aqueous Zn-ion batteries," Advanced Materials, vol. 32, pp., 2020.

Y. J. Wang, N. Li, H. Y. Liu, J. Shi, Y. Q. Li, X. K. Wu, Z. Wang, C. Huang, K. Y. Chen, D. B. Zhang, T. Y. Wu, P. Li, C. X. Liu, and L. W. Mi, ""Zincophilic-hydrophobic" PAN/ PMMA nanofiber membrane toward high-rate dendrite-free Zn anode," Advanced Fiber Materials, vol. 5, pp. 2002-2015, 2023.

M. H. Zhang, J. H. Li, Y. W. Tang, D. W. Wang, H. S. Hu, M. T. Liu, B. Xiao, and P. F. Wang, "Selective Zn-ion channels enabled by a double-network protective layer for stable zinc anode," Energy Storage Materials, vol. 65, pp., 2024.

M. Kwon, J. Lee, S. Ko, G. Lim, S. H. Yu, J. Hong, and M. Lee, "Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid super-capacitors," Energy & Environmental Science, vol. 15, pp. 2889-2899, 2022.

D. Yang, X. Y. Wu, L. He, H. N. Zhao, Y. Z. Wang, Z. Y. Zhang, J. Y. Qiu, X. B. Chen, and Y. J. Wei, "Ionic layer epitaxy growth of organic/inorganic composite protective layers for large-area Li and Zn metal anodes," Nano Letters, vol. 23, pp. 11152-11160, 2023.

Y. Z. Wang, X. M. Xu, J. Yin, G. Huang, T. C. Guo, Z. N. Tian, R. Alsaadi, Y. P. Zhu, and H. N. Alshareef, "MoS2-mediated epitaxial plating of Zn metal anodes," Advanced Materials, vol. 35, no. 6, 2022.

H. Wang, Q. Y. Li, S. Z. Huang, L. J. Zhou, L. Mei, Z. B. Wu, B. H. Qu, W. F. Wei, X. B. Ji, Y. J. Chen, and L. B. Chen, "Controlled deposition via a bifunctional layer enables dendrite-free zinc metal batteries," Chemical Engineering Journal, vol. 470, no. 15, p. 144147, 2023.

Y. Tian, Y. L. An, C. L. Wei, B. J. Xi, S. L. L. Xiong, J. K. Feng, and Y. T. Qian, "Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries," ACS Nano, vol. 13, pp. 11676-11685, 2019.

Z. Li, Z. Gong, X. Y. Wu, K. Ye, J. Yan, G. L. Wang, Y. J. Wei, K. Zhu, J. Yi, D. A. X. Cao, and G. H. Chen, "Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor," Chinese Chemical Letters, vol. 33, pp. 3936-3940, 2022.

Y. B. Mu, Z. Li, B. K. Wu, H. D. Huang, F. H. Wu, Y. Q. Chu, L. F. Zou, M. Yang, J. F. He, L. Ye, M. S. Han, T. S. Zhao, and L. Zeng, "3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries," Nature Communications, vol. 14, pp., 2023.

Q. Liu, R. L. Wang, Z. F. Liu, X. S. Wang, C. P. Han, H. B. Liu, and B. H. Li, "A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries," Journal of Materials Chemistry A. vol. 11, pp. 12910-12917, 2023.

Y. Yang, C. Y. Liu, Z. H. Lv, H. Yang, Y. F. Zhang, M. H. Ye, L. B. Chen, J. B. Zhao, and C. C. Li, "Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free zn metal anodes," Advanced Materials., vol. 33, no. 11, 2021.

C. Ogata, R. Kurogi, K. Hatakeyama, T. Taniguchi, M. Koinuma, and Y. Matsumoto, "All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage," Chemical Communications, vol. 52, pp. 3919-3922, 2016.

K. Y. Kwon, T. H. Jo, J. S. Kim, F. Hasan, and H. D. Yoo, "A chronocoulometric method to measure the corrosion rate on zinc metal electrodes," ACS Applied Materials & Interfaces, vol. 12, pp. 42612-42621, 2020.

Published

2024-06-04

How to Cite

[1]
Z. . LI, T. T. . BEYENE, K. ZHU, and D. . CAO, “Realizing fast plating/stripping of high-performance Zn metal anode with a low Zn loading”, J Met Mater Miner, vol. 34, no. 2, p. 2009, Jun. 2024.

Issue

Section

Original Research Articles

Categories