Solar radiation assisted Photocatalytic Degradation of Congo red using Ce doped LaCoO\(_{3}\)

photocatalytic degradation of dyes

Authors

  • Rishabh Kamal Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India https://orcid.org/0009-0009-6589-3253
  • Rasmirekha PATTANAIK Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India https://orcid.org/0000-0002-1445-0622
  • Debapriya PRADHAN Department of Chemistry, Centurion University of Technology and Management, Bhubaneswar, Odisha 751009, India https://orcid.org/0000-0003-4226-1498
  • Suresh Kumar DASH Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

DOI:

https://doi.org/10.55713/jmmm.v35i3.2230

Keywords:

Perovskite, Ce-LaCoO3, Congo red, Kinetic, Solar light

Abstract

A viable sol-gel synthesis technique was used to synthesize LaCoO3​ and Ce doped LaCoO3 for degradation of congo red dye taking a renewable source of light i.e solar radiation. The crystalline structure, morphology, and optical properties of the synthesized catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis of Ce-doped LaCoO₃ confirmed the presence of La (3d), Ce (3d), Co (2p), C (1s), and O (1s) and their valence states in the perovskite matrix, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and ultraviolet diffuse reflectance spectroscopy (UV-DRS). The XRD analysis with a prominent diffraction peak detected at a 2θ value of 32.88⁰ indicated a well-defined crystalline structure, The calculated average crystallite size of LaCoO3 and Ce doped LaCoO3 is 10.59 and 9.30 nm repectively. The Ce doped LaCoO3 was observed to cause a structural phase transition from a rhombohedral to a cubic phase, while maintaining the lattice geometry, while maintaining the lattice geometry. The photodegradation of congo red dye using prepared catalysts was studied by changing pH, initial dye concentration, catalyst dose and time. The photocatalytic performance of Ce doped LaCoO3 showed greater efficiency than neat LaCoO3​ towards degradation of congo red dye under solar light exposure. The optimum  degradation of congo red dye was nearly 85% compared to nearly 77% for Ce doped LaCoO3 and LaCoO3​ respectively for initial dye concentration of 25 ppm and a catalyst dose of 60 mg in 135 min. The kinetics followed a pseudo-1st order kinetics and the mechanistic study indicated the active involvement of hydroxide (OH.) and super oxide (.O2-) radicals during of the degradation congo red dye by Ce doped LaCoO3 catalyst. The SEM analysis demonstrates a well-crystallized sample with a uniform particle distribution, though it exhibits some degree of agglomeration.

Downloads

Download data is not yet available.

Author Biographies

Rishabh Kamal, Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

Department of Chemistry, ITER ,junior research scholar

Rasmirekha PATTANAIK, Department of Chemistry, ITER, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India

Department of chemistry,ITER, junior research scholar

Debapriya PRADHAN, Department of Chemistry, Centurion University of Technology and Management, Bhubaneswar, Odisha 751009, India

Department of Chemistry,RA

References

C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: Possible approaches,” Journal of Environmental Management, vol. 182, pp. 351-366, 2016. DOI: https://doi.org/10.1016/j.jenvman.2016.07.090

J. Kaushik, N. Himanshi, V. Kumar, K. M. Tripathi, and S. K. Sonkar, “Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel,” Chemosphere, vol. 287, p. 132225, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.132225

E. D. Vale-Júnior, D. R. Da Silva, A. S. Fajardo, and C. A. Martínez-Huitle, “Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes,” Chemosphere, vol. 204, pp. 548-555, 2018. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.007

J. Zhang, L. Wang, G. Zhang, Z. Wang, L. Xu, and Z. Fan, “Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process,” Journal of Colloid and Interface Science, vol. 389, no. 1, pp. 273-283, 2012. DOI: https://doi.org/10.1016/j.jcis.2012.08.062

A. Azzaz, S. Jellali, H. Akrout, A. A. Assadi, and L. Bousselmi, “Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: Biomasses characterization and adsorption properties,” Environmental Science and Pollution Research, vol. 24, no. 11, pp. 9831-9846, 2016. DOI: https://doi.org/10.1007/s11356-016-7698-6

A. Azzaz, S. Jellali, H. Akrout, A. A. Assadi, and L. Bousselmi, “Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions,” Journal of Cleaner Production, vol. 201, pp. 28-38, 2018. DOI: https://doi.org/10.1016/j.jclepro.2018.08.023

S. Rashtbari, and G. Dehghan, “Biodegradation of malachite green by a novel laccase-mimicking multicopper BSA-Cu complex: Performance optimization, intermediates identification and artificial neural network modeling,” Journal of Hazardous Materials, vol. 406, p. 124340, 2020. DOI: https://doi.org/10.1016/j.jhazmat.2020.124340

L. Fang, Y. Xu, L. Xu, T. Shi, X. Ma, X. Wu, Q. X. Li, and R. Hua, “Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1T,” The Science of the Total Environment, vol. 755, p. 142505, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.142505

M. Nemiwal, T. C. Zhang, and D. Kumar, “Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity,” The Science of the Total Environment, vol. 767, p. 144896, 2021. DOI: https://doi.org/10.1016/j.scitotenv.2020.144896

I. Groeneveld, M. Kanelli, F. Ariese, and M. R. Van Bommel, “Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – An overview,” Dyes and Pigments, vol. 210, p. 110999, 2022. DOI: https://doi.org/10.1016/j.dyepig.2022.110999

C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, and J. Yu, “Design, fabrication, and mechanism of nitrogen‐doped graphene‐based photocatalyst,” Advanced Materials, vol. 33, no. 9, 2021. DOI: https://doi.org/10.1002/adma.202003521

Y. Zhu, J. Ren, X. Zhang, and D. Yang, “Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production,” Nanoscale, vol. 12, no. 25, pp. 13297-13310, 2020. DOI: https://doi.org/10.1039/D0NR01748E

N. Lin, Y. Gong, R. Wang, Y. Wang, and X. Zhang, “Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms,” Journal of Hazardous Materials, vol. 424, p. 127637, 2021.

Y. Tang, C. H. Mak, G. Jia, K.-C. Cheng, J-J. Kai, C.-W. Hsieh, F. Meng, W. Niu, F.-F. Li, H.-H. Shen, X. Zhu, H. M. Chen, and H.-Y. Hsu, “Lead-free hybrid perovskite photocatalysts: Surface engineering, charge-carrier behaviors, and solar-driven applications,” Journal of Materials Chemistry A, vol. 10, no. 23, pp. 12296-12316, 2022. DOI: https://doi.org/10.1039/D2TA01170K

R. Jana, P. M. Rajaitha, S. Hajra, and H. J. Kim, “Advancements in visible-light-driven double perovskite nanoparticles for photo-degradation,” Micro and Nano Systems Letters, vol. 11, no. 1, 2023. DOI: https://doi.org/10.1186/s40486-023-00168-9

M. Rafiq, A. Ahmed, M. Usman, R. Ullah, F. Gao, M. Mateen, B. Yu, Y. Shen, and H. Cong “Efficient heterogeneous activation of peroxymonosulfate by manganese-doped LaCoO3 perovskites for metronidazole degradation: A mechanistic study and reaction pathways,” Journal of Environmental Chemical Engineering, vol. 11, no. 6, p. 111608, 2023. DOI: https://doi.org/10.1016/j.jece.2023.111608

K. Ramachandran, R. Ziad, S. Columbus, K. Daoudi, J. Hammouche, M. A. El Khakani, S. Chidambaram, and M. Gaidi, “TiO2/Si nanowires hybrid system for efficient photocatalytic degradation of organic dye,” Journal of Materials Science Materials in Electronics, vol. 33, no. 12, pp. 9194-9203, 2021. DOI: https://doi.org/10.1007/s10854-021-07214-5

S. Zhang, N. Han, and X. Tan, “Density functional theory calculations of atomic, electronic and thermodynamic properties of cubic LaCoO3 and La1−xSrxCoO3 surfaces,” RSC Advances, vol. 5, no. 1, pp. 760-769, 2014. DOI: https://doi.org/10.1039/C4RA12563K

A. A. Ansari, S. F. Adil, M. Alam, N. Ahmad, M. E. Assal, J. P. Labis, and A. Alwarthan, “Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles,” Scientific Reports, vol. 10, no. 1, p. 15012, 2020. DOI: https://doi.org/10.1038/s41598-020-71869-z

L. Predoana, B. Malic, and M. Zaharescu, “LaCoO3 formation from precursors obtained by water-based sol–gel method with citric acid,” Journal of Thermal Analysis and Calorimetry, vol. 98, no. 2, pp. 361-366, 2009. DOI: https://doi.org/10.1007/s10973-009-0315-x

A. Ansari, V. U. Siddiqui, and W. A. Siddiqi, “4-Perovskite-type catalytic materials for water treatment,” in Hybrid Perovskite Composite Materials, Woodhead Pulishing, 2020, pp. 117-134. DOI: https://doi.org/10.1016/B978-0-12-819977-0.00004-4

J. Guo, P. Li, and Z. Yang, “A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride,” Catalysis Communications, vol. 122, pp. 63-67, 2019. DOI: https://doi.org/10.1016/j.catcom.2019.01.022

L. Wang, Q. Pang, Q. Song, X. Pan, and L. Jia, “Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation,” Fuel, vol. 140, pp. 267-274, 2014. DOI: https://doi.org/10.1016/j.fuel.2014.09.107

A. Bodade, A. Bodade, G. N. Chaudhari, and S. M. Ghodsal, “Photocatalytic degradation of methylene blue dye over Sr doped LaCoO3 nano-catalyst under sun light irradiation,” Journal of emerging technologies and innovative research, vol. 9, no. 3, pp. 231-238, 2022.

S. Jayapandi, P. Soundarrajan, S. S. Kumar, D. Lakshmi, M. D. Albaqami, M. Ouladsmane, and G. Mani, “Efficient Z-scheme LaCoO3/In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation,” Research on Chemical Intermediates, vol. 48, no. 11, pp. 4419-4442, 2022.

J. Qian, T. Wang, Z. Zhang, Y. Liu, J. Li, and D. Gao, “Engineered spin state in Ce doped LaCoO3 with enhanced electrocatalytic activity for rechargeable Zn-Air batteries,” Nano Energy, vol. 74, p. 104948, 2020. DOI: https://doi.org/10.1016/j.nanoen.2020.104948

E. Nyamdavaa, E. Uyanga, G. Sevjidsuren, and P. Altantsog, “Preparation and characterization of cerium doped LaCoO3 perovskite,” Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques, vol. 11, no. 2, pp. 366–370, 2017. DOI: https://doi.org/10.1134/S1027451017020112

P. K. Panda, R. Pattanaik, S. Mishra, D. Pradhan, and S. K. Dash, “Superior photocatalytic degradation of MB dye using BiVO4 nanoparticles under solar light irradiation,” Materials Today Proceedings, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.11.039

M. Islam, M.-G. Jeong, F. Ghani, and H.-G. Jung, “Micro emulsion synthesis of LaCoO3 nanoparticles and their electro-chemical catalytic activity,” Journal of Electrochemical Science and Technology, vol. 6, no. 4, pp. 121-130, 2015. DOI: https://doi.org/10.33961/JECST.2015.6.4.121

D. A. Kumar, S. Selvasekarapandian, H. Nithya, J. Leiro, Y. Masuda, S-D. Kim, and S-K. Woo, “Effect of calcium doping on LaCoO3 prepared by Pechini method,” Powder Technology, vol. 235, pp. 140-147, 2012. DOI: https://doi.org/10.1016/j.powtec.2012.09.030

L. Wu, X. Shi, H. Du, Q. An, Z. Li, H. Xu, and H. Ran, “Ce-doped LaCoO3 film as a promising gas sensor for ethanol,” AIP Advances, vol. 11, no. 5, p. 055305, 2021. DOI: https://doi.org/10.1063/5.0049923

Md. K. Alam, Md. S. Hossain, S. Tabassum, N. M. Bahadur, and S. Ahmed, “Green synthesis of nano-MgO using lemon juice for amplified photocatalytic degradation of organic pollutants,” Open Ceramics, vol. 19, p. 100625, 2024. DOI: https://doi.org/10.1016/j.oceram.2024.100625

R. Pattanaik, R. Kamal, D. Pradhan, and S. K. Dash, “Efficacy of BiFeO3 and Bi4Ti3O12 towards photocatalytic degradation of MG and MB dyes: A comparative study under solar irradiation,” Journal of Metals Materials and Minerals, vol. 35, no. 1, p e2228, 2025. DOI: https://doi.org/10.55713/jmmm.v35i1.2228

S. Al-Farraj, and E. A. Abdelrahman, “Efficient photocatalytic degradation of congo red dye using facilely synthesized and characterized MgAl2O4 nanoparticles,” ACS Omega, vol. 9, no. 4, pp. 4870-4880, 2024.

R. Bortamuly, G. Konwar, P. K. Boruah, M. R. Das, D. Mahanta, and P. Saikia, “CeO2-PANI-HCl and CeO2-PANI-PTSA composites: Synthesis, characterization, and utilization as supercapacitor electrode materials,” Ionics, vol. 26, no. 11, pp. 5747-5756, 2020. DOI: https://doi.org/10.1007/s11581-020-03690-7

S. Yao, R. Zheng, R. Li, Y. Chen, X. Zhou, X. Ning, L. Zhan, and J. Luo, “LaCoO3 acts as a high‐efficiency co‐catalyst for enhancing visible‐light‐driven tetracycline degradation of BiOI,” Journal of the American Ceramic Society, vol. 103, no. 3, pp. 1709-1721, 2019. DOI: https://doi.org/10.1111/jace.16839

Y. Feng, K. Hu, M. Zhang, W. Ding, X. Kong, Z. Sheng, and Q. Liu, “Engineering A-site cation deficiency into LaCoO3 thin sheets for improved microwave absorption performance,” Journal of Materials Science, vol. 57, no. 1, pp. 204-216, 2022. DOI: https://doi.org/10.1007/s10853-021-06650-2

P. Macwan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol–gel type syntheses and its applications,” Journal of Materials Science, vol. 46, no. 11, pp. 3669-3686, 2011. DOI: https://doi.org/10.1007/s10853-011-5378-y

R. Schmitt, A. Nenning, Q. Kraynis, R. Korobko, A. I. Frenkel, I. Lubomirsky, S. M. Haile, and J. L. M. Rupp. “A review of defect structure and chemistry in ceria and its solid solutions,” Chemical Society Reviews, vol. 49, no. 2, pp. 554-592, 2019. DOI: https://doi.org/10.1039/C9CS00588A

R. Wang, K. Zhang, X. Zhong, and F. Jiang, “Z-scheme LaCoO3/ C3N5 for efficient full-spectrum light-simulated solar photo-catalytic hydrogen generation,” RSC Advances, vol. 12, no. 37, pp. 24026-24036, 2022. DOI: https://doi.org/10.1039/D2RA03874A

G. Singh, M. K. Ubhi, K. Jeet, C. Singla, and M. Kaur, “A review on impacting parameters for photocatalytic degradation of organic effluents by ferrites and their nanocomposites,” Processes, vol. 11, no. 6, p. 1727, 2023. DOI: https://doi.org/10.3390/pr11061727

M. Saeed, M. Muneer, A. U. Haq, and N. Akram, “Photo-catalysis: an effective tool for photodegradation of dyes—a review,” Environmental Science and Pollution Research, vol. 29, no. 1, pp. 293-311, 2021. DOI: https://doi.org/10.1007/s11356-021-16389-7

A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem, “Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview,” RSC Advances, vol. 4, no. 70, pp. 37003-37026, 2014. DOI: https://doi.org/10.1039/C4RA06658H

E. S. Al-Farraj, and E. A. Abdelrahman, “Efficient photocatalytic degradation of congo red dye using facilely synthesized and characterized MgAl2O4 nanoparticles,” ACS Omega, vol. 9, no. 4, pp. 4870-4880, 2024. DOI: https://doi.org/10.1021/acsomega.3c08485

Y. Chen, S. Xu, C. F. Wen, H. Zhang, T. Zhang, F. Lv, Y. Yue, and Z. Bian, “Unravelling the role of free radicals in photo-catalysis,” Chemistry - a European Journal, vol. 30, no. 29, 2024. DOI: https://doi.org/10.1002/chem.202400001

M. F. A. Messih, M. A. Ahmed, A. Soltan, and S. S. Anis, “Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation,” Journal of Physics and Chemistry of Solids, vol. 135, p. 109086, 2019. DOI: https://doi.org/10.1016/j.jpcs.2019.109086

C. Alberoni, I. Barroso-Martin, A. Infantes-Molina, E. Rodriguez-Castellon, A. Talon, H. Zhao, S. You, A. Vomiero, and E. Moretti, “Ceria doping boosts methylene blue photodegradation in titania nanostructures,” Materials Chemistry Frontiers, vol. 5, no. 11, pp. 4138-4152, 2021. DOI: https://doi.org/10.1039/D1QM00068C

R. Javaid, and U. Y. Qazi, “Catalytic oxidation process for the degradation of synthetic dyes: An overview,” International Journal of Environmental Research and Public Health, vol. 16, no. 11, p. 2066, 2019 DOI: https://doi.org/10.3390/ijerph16112066

Y. Chen, D. Ma, G. He, and S. Pan, “Effects of pH on the photocatalytic activity and degradation mechanism of rhodamine B over fusiform Bi photocatalysts under visible light,” Water, vol. 16, no. 17, p. 2389, 2024. DOI: https://doi.org/10.3390/w16172389

S. Irfan, Y. Shen, L. Li, Asfandiyar, S. Butt, and C.-W. Nan, “The Gadolinium (Gd3+) and Tin (Sn4+) Co-doped BiFeO3 nano-particles as new solar light active photocatalyst,” Scientific Reports, vol. 7, no. 1, p. 42493, 2017. DOI: https://doi.org/10.1038/srep42493

S. Jayapandi, S. Palanivel, S. S. Kumar, L. Devaraj, M. Albaqami, M. Ouladsmane, and G. Mani, “Efficient Z-scheme LaCoO3/ In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation,” Research on Chemical Intermediates, vol. 48, no. 11, pp. 4419-4442, 2022. DOI: https://doi.org/10.1007/s11164-022-04832-4

M. Irshad, S. Columbus, and J. B. M. Parambath, “Enhanced photocatalytic activities of LaCoO3 perovskite nanostructures for degrading cationic and anionic dyes,” Journal of Physics Conference Series, vol. 2751, no. 1, p. 012030, 2024. DOI: https://doi.org/10.1088/1742-6596/2751/1/012030

X. Fu, Y. Chen, G. Q. Yu, C. Yu, H. Z. Wang, and G. De Zhang, “Preparation, characterization and photocatalysis properties of ultrafine perovskite-type LaCoO3,” Advanced Materials Research, vol. 197-198, pp. 935-942, 2011. DOI: https://doi.org/10.4028/www.scientific.net/AMR.197-198.935

A. Ouatizerga, G. Rekhila, S. Mirad, and M. Trari, “Characterization and application of the hetero-system LaCoO3/ZnO for degradation of Orange II under solar light,” Chemical Papers, vol. 77, no. 9, pp. 4935-4942, 2023. DOI: https://doi.org/10.1007/s11696-023-02830-3

K. Sathiyamoorthy, A. Silambarasan, M. Navaneethan, and S. Harish, “Boosting the performance of LaCoO3/MoS2 perovskite interface for sustainable decontaminants under visible light-driven photocatalysis,” Chemosphere, vol. 348, p. 140575, 2023. DOI: https://doi.org/10.1016/j.chemosphere.2023.140575

A. Khan, S. Sadiq, I. Khan, M. Humayun, G. Jiyuan, M. Usman, A. Khan, S. Khan, A. F. Alanazi, and M. Bououding, “Preparation of visible-light active MOFs-Perovskites (ZIF-67/LaFeO3) nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation,” Heliyon, vol. 10, no. 5, p. e27378, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e27378

S. Zaman, I. Khan, F.-M. Zhang, S. Khan, A. Khan, S. Khan, S. Sadiq, M. Rafiq, S. Saghir, and X.-J. Sun, “Synthesis of

mediator free hollow BiFeO3 spheres/porous g-C3N4 Z-scheme photocatalysts for CO2 conversion and Alizarin Red S degradation,” Materials Science in Semiconductor Processing, vol. 162, p. 107534, 2023. DOI: https://doi.org/10.1016/j.mssp.2023.107534

S. Sadiq, I. Khan, M. Humayun, P. Wu, A. Khan, S. Khan, A. F. Alanazi, and M. Bououdina, “Synthesis of metal–organic framework-based ZIF-8@ZIF-67 nanocomposites for antibiotic decomposition and antibacterial activities,” ACS Omega, vol. 8, no. 51, pp. 49244-49258, 2023. DOI: https://doi.org/10.1021/acsomega.3c07606

W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. i. Seok, “Iodide management innformamidinium-lead-halide–based perovskite layers for efficient solar cells, Science, vol. 356, no. 6345, pp. 1376-1379, 2017. DOI: https://doi.org/10.1126/science.aan2301

N. Li, X. Niu, Q. Chen, and H. Zhou, “Towards commercialization: The operational stability of perovskite solar cells,” Chemical Society Reviews, vol. 49, no. 22, pp. 8235-8286, 2020. DOI: https://doi.org/10.1039/D0CS00573H

N. Lin, Y. Gong, R. Wang, Y. Wang, and X. Zhang, “Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms,” Journal of Hazardous Materials, vol. 424, p. 127637, 2021. DOI: https://doi.org/10.1016/j.jhazmat.2021.127637

S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, “Effect of calcination temperature on photo-catalytic activity of synthesized TIO2 nanoparticles via wet ball milling sol-gel method,” Applied Sciences, vol. 10, no. 3, p. 993, 2020. DOI: https://doi.org/10.3390/app10030993

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69-96. 1995. DOI: https://doi.org/10.1021/cr00033a004

U. G. Akpan, and B. H. Hameed, “Parameters affecting the photo-catalytic degradation of dyes using TiO2-based photocatalysts: A review,” Journal of Hazardous Materials, vol. 170, no. 2-3, pp. 520-529, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.039

M. N. Chong, B. Jin, C. W. K. Chow, and C.Saint, “Recent developments in photocatalytic water treatment technology: A review,” Water Research, vol. 44, no. 10, pp. 2997-3027, 2010. DOI: https://doi.org/10.1016/j.watres.2010.02.039

M. Pera-Titus, V. Garcı́a-Molina, M. A. Baños, J. Giménez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: A general review,” Applied Catalysis B Environment and Energy, vol. 47, no. 4, pp. 219-256, 2003. DOI: https://doi.org/10.1016/j.apcatb.2003.09.010

Z.-M. Chai, B.-H. Wang, Y.-X. Tan, Z.-J. Bai, J.-B. Pan, and L. Chen, “enhanced photocatalytic activity for selective oxidation of toluene over cubic–hexagonal CdS phase junctions,” Industrial & Engineering Chemistry Research, vol. 60, no. 30, pp. 11106-11116, 2021. DOI: https://doi.org/10.1021/acs.iecr.1c01505

N. S. M. Viswanath, and W. B. Im, “Underlying dynamics of Double-Halide perovskites: unraveling structural complexity, bandgap modulation, optical, and carrier dynamics for Next-Generation optoelectronics,” ACS Applied Optical Materials, vol. 3, no. 3, pp. 578-600, 2025. DOI: https://doi.org/10.1021/acsaom.4c00524

L. Huang, X. Huang, J. Yan, Y. Liu, H. Jiang, H. Zhang, J. Tang, and Q. Liu, “Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. Journal of Hazardous Materials, vol. 442, p. 130024, 2022. DOI: https://doi.org/10.1016/j.jhazmat.2022.130024

P. Priyadarshini, P. Rout, S. Supriya, P. C. Kumar, and R. Naik, “Effect of CU concentration on optimizing the optical, morphological, and structural characteristics of ZNIN2S4 nanosheets for photoresponse applications,” ACS Applied Nano Materials, vol. 7, no. 24, pp. 28131-28144, 2024. DOI: https://doi.org/10.1021/acsanm.4c04133

Downloads

Published

2025-08-21

How to Cite

[1]
R. KAMAL, R. PATTANAIK, D. PRADHAN, and S. K. DASH, “Solar radiation assisted Photocatalytic Degradation of Congo red using Ce doped LaCoO\(_{3}\): photocatalytic degradation of dyes”, J Met Mater Miner, vol. 35, no. 3, p. e2230, Aug. 2025.

Issue

Section

Original Research Articles

Categories