Sm3+ doped Mn-Zn mixed ferrites: Synthesis and characterization

Authors

  • Anjali SHRIVASTAVA School of Studies in Physics, Jiwaji University, Gwalior (M.P.) – 474011, India
  • A. K. SHRIVASTAVA School of Studies in Physics, Jiwaji University, Gwalior (M.P.) – 474011, India

DOI:

https://doi.org/10.55713/jmmm.v32i3.1267

Keywords:

Ferrites, Rare Earth, XRD, SEM, VSM

Abstract

Pure and Samarium (Sm3+) doped Mn-Zn ferrites were synthesized using Co-precipitation method. The Sm3+ concentration varied from 0.1% to 0.3%. This was added to the solution during the synthesis of Mn-Zn ferrites (Mn0.5Zn0.5Fe2O4) at room temperature. The precipitate so obtained was annealed at 200℃ for 4 h and then crushed to powder. The powdered material was subjected to structural, morphological, compositional, optical and magnetic characterization. XRD shows cubic spinal structure with crystallite size of the order of 6 nm. TEM and SEM images show spherical particles are in good agreement with XRD data. EDAX indicates stoichiometry of elements present in material. FTIR shows various functional groups and doped samarium. VSM for pure Mn:Zn ferrite show hysteresis with high magnetization, coercivity and low remanence. All the magnetic parameters decrease on 0.1% Sm3+ doping. These parameters get increased, compared to values at 0.1% doping, on increasing Sm3+ doping to 0.2%. On further increasing Sm3+ doping to 0.3%, the magnetic parameters show insignificant changes. VSM shows that Sm3+ affects magnetic properties significantly only at lower doping concentrations. These changes are due to Sm3+ substitution at tetrahedral and octahedral positions. The ionic radii mismatch in between Samarium and iron influence the magnetic parameters of Mn0.5Zn0.5Fe2O4.

Downloads

Download data is not yet available.

References

M. Sugimoto, “The past, present and future of ferrites,” Journal of American Chemical Society, vol. 82, pp. 269-280, 1999.

A. H. Lu, E. L. Salabas, and F. Schth, “Magnetic nanoparticles: Synthesis, protection, fictionalization, and application,” Angewandte Chemie International Edition, vol. 46, no. 8, pp. 1222-1244, 2007.

D. Stoppels, “Developments in soft magnetic power ferrites”, Journal of Magnetism and Magnetic Materials, vol.160, pp. 323-328, 1996.

P. Hu, H. B. Yang, D. A. Pan, H. Wang, J. J. Tian, S. G. Zhang, X. F. Wang, and A. A. Volinsky,” Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders,” Journal of Magnetism and Magnetic Materials, vol. 322, pp.173-177, 2010.

U. Ghazanfar, S. A. Siddiqi, and G. Abbas, “Structural analysis of the Mn–Zn ferrites using XRD technique,” Material Science and Engineering B, vol. 118, pp.84-86, 2005.

G. Ott, J. Wrba, and R. Lucke, “Recent Developments of Mn-Zn Ferrites for high permeability applications,” Journal of Magnetism and Magnetic Materials, vol. 254-255, pp. 535-537, 2003.

H. Waqus, and A. H. Quresghi, “Influence of pH on nano sized Mn–Zn ferrite synthesized by sol–gel auto combustion process,” Journal of Thermal Analysis and Calorimetry, vol. 98, no. 2, pp. 355-360, 2009.

A. D. P. Rao, B. Ramesh, P. R. M. Rao, and S. B. Raju, “X-ray diffraction studies of Sn/Nb substituted Mn-Zn ferrites,” IL Nuovo Cimento D, vol. 20, no. 2, p. 9, 1998.

H. N. Ji, Z. W. Lan, Z. Yu, Y. J. Zhi, and Z. Liu, IEEE Applied Superior Electronic Devices, pp. 25, 2009.

V. Sepelak, P. Heitjans, and K. D. Becker, “Nanoscale spinel ferrites prepared by mechano-chemical route,” Journal of Thermal Analysis and Calorimetry, vol. 90, no. 1, pp. 93-97, 2007.

K. Q. Jiang, K. K. Li, C. H. Peng, and Y. Zhu, “Effect of multi-additives on the microstructure and magnetic properties of high permeability Mn-Zn ferrite,” Journal of Alloys and Compounds, vol. 541, pp. 472-476, 2012.

H. Anwar, and A. Maqsood “Comparison of structural and electrical properties of Co2+ doped Mn-Zn soft nano ferrites prepared via co-precipitation and hydrothermal methods,” Material Research Bulletin, vol. 49, pp. 426-433, 2014.

H. Bayrakdar, O. Yalçın, S. Vural, and K. Esmer, “Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites,” Journal of Magnetism and Magnetic Materials, vol. 343, pp. 86-91, 2013.

M. Gu, and G. Q. Liu. “Effects of MoO3 and TiO2 additions on the magnetic properties of manganese-zinc power ferrites,” Journal of Alloys and Compounds, vol. 475, pp. 356-360, 2009.

M. A. Gabal, A. M. Abdel-Daiem, Y. M. Al Angari, and I. M. Ismail, “Influence of Al-substitution on structural, electrical and magnetic properties of Mn-Zn ferrites nanopowders prepared via the sol-gel auto-combustion method,” Polyhedron, vol. 57, pp. 105-111, 2013.

H. N. Ji, Z. W. Lan, Z. Yu, K. Sun, and L. Z. Li, “Influence of Sn-substitution on temperature dependence and magnetic dis-accommodation of manganese-zinc ferrites,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 14, pp. 2121-2124, 2009.

J. Bifa, T. Changan, Z. Quanzheng, J. Dongdong, Y. Jie, X. Jinsong, and S. Jingyu, “Magnetic properties of samarium and gadolinium co-doping Mn-Zn ferrites obtained by sol-gel auto-combustion method,” Journal of Rare Earths, vol. 34, no. 10, pp. 1017-1023, 2016.

A. B. Mugutkara, S. K. Gore, U. B. Tumberphale, V. K. V. Jadhav, R. S. Mane, S. M. Patange, S. E. Shirsath, and S. S. Jadhav, “Role of composition and grain size in controlling the structure sensitive magnetic properties of Sm3+ substituted nanocrystalline Co-Zn ferrites,” Journal of Rare Earths, vol. 38, no. 10, pp. 1069-1075, 2020.

Q. K. Xing, Z. J. Peng, C. B. Wang, and X. L. Fu, “Doping effect of Y3+ ions on the microstructural and electromagnetic properties of Mn-Zn ferrites,” Physica B: Condensed Matter, vol. 407, no. 3, pp. 388-392, 2012.

N. Lwin, M. N. A. Fauzi, S. Sreekantan, and R. Othman, “Physical and electromagnetic properties of nanosized Gd substituted Mg-Mn ferrites by solution combustion method,” Physica B: Condensed Matter, vol. 461, no. 15, pp. 134-139, 2015.

S. E. Jacobo, S. Duhalde, and H. R. Bertorello, “Rare earth influence on the structural and magnetic properties of Ni-Zn ferrites,” Journal of Magnetism and Magnetic Materials, vol. 272-276, pp. 2253-2254, 2004.

S. Tapdiya, S. Singh, S. Kulshrestha, and A. K. Shrivastava, “Micro structural analysis and magnetic characteristics of rare earth substituted cobalt Ferrite,” AIP Conference Proceedings, vol. 1953, p. 120025, 2018.

A. B. Kadam, V. K. Mande, S. B. Kadam, R. H. Kadam, S. E. Shirsath, and R. B. Borade, “Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites,” Journal of Alloys and Compounds, vol. 840, p.155669, 2020.

V. More, R. B. Borade, K. Desai, V. K. Barote, S. S. Kadam, V. S. Shinde, D. R. Kulkarn, R. H. Kadam, and S. T. Alone “Site occupancy, surface morphology and mechanical properties of Ce3+ Added Ni–Mn–Zn Ferrite Nano crystals Synthesized Via Sol–Gel Route” NANO: Brief Reports and Reviews, vol. 16, no. 5, p. 2150059, 2021.

R. H. Kadam, R. B. Borade, M. L. Mane, D. R. Mane, K. M. Batoo, and S. E. Shirsath, “Structural, mechanical, dielectric properties and magnetic interactions in Dy3+-substituted Co–Cu–Zn nanoferrites,” RSC Advances, vol. 10, no. 47, p. 27911, 2020.

M. V. Chaudhari, S. E. Shirsath, A. B. Kadam, R. H. Kadam, S. B. Shelke, and D. R. Mane, “Site occupancies of Co–Mg–Cr–Fe ions and their impact on the properties of Co0.5Mg0.5CrxFe2-xO4,” Journal of Alloy and Compounds, vol. 552, no. 5, pp. 443-450, 2013.

V. J. Angadi, B. Rudraswamy, E. Melagiriyappa, Y. Shivaraj, and S. Matteppanavar, “Effect of Sm3+ substitution on structural and magnetic investigation of nano sized Mn–Sm–Zn ferrites,” Indian Journal of Physics, vol. 90, no. 8, pp. 881-885, 2016.

M. A. Iqbal, M. Islamn, I. Ali, H. M. Khan, G. Mustafa, and I. Ali, “Study of electrical transport properties of Eu3+ substituted Mn-Zn-ferrites synthesized by co-precipitation technique,” Ceramics International, vol. 39, pp. 1539-1545, 2013.

A. B. Mugutkar, S. K. Gore, R. S. Mane, K. M. Batoo, S. F. Adil, and S. S. Jadhav, “Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations,” Ceremic International, 2018.

R. A. Pawar, S. M. Patange, A. R. Shitre, S. K. Gore, S. S. Jadhav, and S. E. Shirsath, “Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles forenhanced magnetic properties,” RSC Advances., vol 8, p. 25258, 2018.

A. Shrivastava, and A. K. Shrivastava, “Improvement in properties of Mn-Zn ferrite nanoparticles by rare earth doping,” Journal of Nano and Electronic physics, vol. 13, no. 2, p. 02002, 2021.

R. P. Pant, M. Arora, B. Kaur, V. Kumar, and A. Kumar, “Finite size effect on Gd3+ doped CoGdxFe2-xO4 (0.0 ≤ x ≤ 0.5)particles,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 22, pp. 3688-3691, 2010.

W. Lueangchaichaweng, B. Singh, D. Mandelli, W. A. Carvalho, S. Fiorilli, and P. P. Pescarmona, “High surface area, nano-structured boehmite and alumina catalysts: Synthesis and application in the sustainable epoxidation of alkenes,” Applied Catalysis A: General, vol. 571, pp. 180-187, 2019.

U. N. Trivedi, K. H. Jani, K. B. Modi, and H. H. Joshi, “Study of cation distribution in lithium doped nickel ferrite,” Journal of Material Science Letters, vol. 19, pp. 1271-1273, 2000.

R. M. Mohamed, M. M. Rashad, F. A. Haraz, and W. Sigmund, “Structure and magnetic properties of nano-crystalline cobalt ferrite powders synthesized using organic acid precursor method,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 14, pp. 2058-2064, 2010

A. B. Mugutkar, S. K. Gore, R. S. Mane, S. M. Patange, S. S. Jadhav, S. F. Shaikh, A. M. Al-Enizi, A. Nafady, B. M. Thamer, and M. Ubaidullah, “Structural modifications in Co–Zn nanoferrites by Gd substitution triggering to dielectric and gas sensing applications,” Journal of Alloys and Compounds, vol. 844, p. 156178, 2020.

J. Coates, “Interpretation of infrared spectra, a practical approach,” in Encyclopedia of Analytical Chemistry (Ed.), p. 10815, 2000.

S. Thakur, S. C. Katyal, and M. Singh, “Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 1, pp. 1-7, 2009.

L. R. Maxwell, and S. J. Pickart, “Magnetization in nickel ferrite-aluminates and nickel ferrite-Gallates,” Physical Review Journals Archive, vol. 92, p. 1120, 1953.

E. C. Snelling, “Soft ferrites: Properties and applications,” in Handbook of Modern Ferromagnetic Materials, 2nd ed., Butterworths, London, 1969.

J. Azadmanjiri, and S. A. Seyyed Ebrahimi, “Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol‐gel autocombustion method,” Physica. Status Solidi (C), vol. 1, no. 12, pp. 3414-3417, 2004.

B. Baruwati, R. K. Rana, and S. V. Manorama, “Further insights in the conductivity behavior of nano-crystalline NiFe2O4,” Journal of Applied Physics, vol. 101, p. 014302, 2007.

Downloads

Published

2022-09-30

How to Cite

[1]
A. SHRIVASTAVA and A. K. . SHRIVASTAVA, “Sm3+ doped Mn-Zn mixed ferrites: Synthesis and characterization”, J Met Mater Miner, vol. 32, no. 3, pp. 43–53, Sep. 2022.

Issue

Section

Original Research Articles