Effect of A-site modification on structural and microwave dielectric properties of calcium titanate
DOI:
https://doi.org/10.55713/jmmm.v32i3.1525บทคัดย่อ
This article presents studies on characteristics properties of CaTiO3, Ca0.8Sr0.2TiO3, and Ca0.6La0.8/3TiO3 ceramics. These ceramics were synthesized using the solid-state reaction process. Structural examination revealed that the grown ceramics have an orthorhombic structure with the Pbnm space group. The random distribution of particle size was shown through morphological investigation. Apparent density of developed ceramics was determined using the Archimedes technique and found to be ˂ 90%. The microwave dielectric properties of grown ceramics are compared on the basis of ionic polarizability. It is observed that partial replacement of Ca-ions by Sr-ions provides a high permittivity value (er = 168.93), higher quality factor Q × f = 9,330 GHz), and enhanced positive temperature coefficient of resonant frequency (tf = 908.17). However, the substitution of Ca-ions by La-ions offers a low permittivity value (113.35), higher quality factor (16,730 GHz), and decreased temperature coefficient of resonant frequency (229.49 ppm/°C). These materials can be used with the ceramics possessing a negative temperature coefficient of resonant frequency to balance its tf- value nearly to zero.
Downloads
เอกสารอ้างอิง
W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, and I. M. Reaney, "Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications," Journal of the European Ceramic Society, vol. 42, pp. 2820-2826, 2022. DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.01.050
H. Lim and Y.-J. Oh, "Low-temperature sintered Bi1-xSmxNbO4 microwave dielectrics," Journal of the European Ceramic Society, vol. 40, pp. 1191-1197, 2020. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.11.070
D. Wang, L. Li, J. Jiang, Z. Lu, G. Wang, K. Song, D. Zhou, and I. M. Reaney, "Cold sintering of microwave dielectric ceramics and devices," Journal of Materials Research, vol. 36, pp. 333-349, 2021. DOI: https://doi.org/10.1557/s43578-020-00029-w
S. S. Rajput and S. Keshri, "Structural and microwave properties of (Mg,Zn/Co)TiO3 dielectric ceramics," Journal of materials engineering and performance, vol. 23, pp. 2103-2109, 2014. DOI: https://doi.org/10.1007/s11665-014-0950-7
M. T. Sebastian, Dielectric materials for wireless communication: Elsevier, 2010.
S. S. Rajput, S. Keshri, V. R. Gupta, N. Gupta, V. Bovtun, and J. Petzelt, "Design of microwave dielectric resonator antenna using MZTO–CSTO composite," Ceramics International, vol. 38, pp. 2355-2362, 2012. DOI: https://doi.org/10.1016/j.ceramint.2011.10.088
R. K. Bhuyan, "Ultra-low loss Mg2TiO4 based dielectric ceramics for microwave applications: An Overview," Micro and Nanosystems, vol. 14, pp. 110-120, 2022. DOI: https://doi.org/10.2174/1876402912999200825104327
J. Lv, Z. Cao, Y. Wang, F. Shi, and J. Wang, "Crystal structures and microwave dielectric properties of Sr2MgWO6 ceramics at different sintering temperatures," Journal of Materiomics, vol. 8, pp. 79-87, 2022. DOI: https://doi.org/10.1016/j.jmat.2021.05.004
L. He and R. Zuo, "A novel (1-x)MgZr0.85Sn0.15Nb2O8-xBa3Ti4Nb4O21 microwave dielectric composite ceramic with near-zero temperature coefficient," Journal of Alloys and Compounds, vol. 896, p. 163101, 2022. DOI: https://doi.org/10.1016/j.jallcom.2021.163101
Y. Yu, Y. Wang, W. Guo, C. Zhu, A. Ji, H. Wu, et al., "Grain size engineered 0.95MgTiO3–0.05CaTiO3 ceramics with excellent microwave dielectric properties and prominent mechanical performance," Journal of the American Ceramic Society, vol. 105, pp. 299-307, 2022. DOI: https://doi.org/10.1111/jace.18045
Y.-C. Chen, S.-M. Tsao, C.-S. Lin, S.-C. Wang, and Y.-H. Chien, "Microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 for application in dielectric resonator antenna," Journal of Alloys and Compounds, vol. 471, pp. 347-351, 2009. DOI: https://doi.org/10.1016/j.jallcom.2008.03.118
R. G. M. Oliveira, R. A. Silva, J. E. V. De Morais, G. S. Batista, M. A. S. Silva, J. C. Goes, H. D. de Andrade, I. S. Queiroz, C. Singh, A. S. B. Sombra, "Effects of CaTiO3 addition on the microwave dielectric properties and antenna properties of BiVO4 ceramics," Composites Part B: Engineering, vol. 175, p. 107122, 2019. DOI: https://doi.org/10.1016/j.compositesb.2019.107122
Y. Guo, J. Tan, and J. Zhao, "Influence of CTO additives on microstructure and electrical properties of CCTO ceramics," Materials Chemistry and Physics, vol. 278, p. 125659, 2022. DOI: https://doi.org/10.1016/j.matchemphys.2021.125659
C. Du, D. Zhou, R. T. Li, H. T. Chen, G. H. Zhou, B. Tang, M. A. Darwish, S. X, and Z. Xu, "Fabrication of wideband low‐profile dielectric patch antennas from temperature stable 0.65CaTiO3–0.35LaAlO3 microwave dielectric ceramic," Advanced Electronic Materials, vol. 8, no. 9, p. 2101414, 2022. DOI: https://doi.org/10.1002/aelm.202101414
S. Lee, S. Kwak, T. Park, B. Son, H. J. Yun, J. Hur, and H. Yoo, "Synthesis of lead-free caTiO3 oxide perovskite film through solution combustion method and its thickness-dependent hysteresis behaviors within 100 mV operation," Molecules, vol. 26, p. 5446, 2021. DOI: https://doi.org/10.3390/molecules26185446
A. Zaman, S. Uddin, N. Mehboob, A. Ali, A. Ahmad, and K. Bashir, "Effect of Zr4+ on the structural and microwave dielectric properties of CaTiO3 ceramics," Ferroelectrics, vol. 577, pp. 143-152, 2021. DOI: https://doi.org/10.1080/00150193.2021.1916357
T. Křenek, T. Kovářík, J. Pola, T. Stich, and D. Docheva, "Nano and micro-forms of calcium titanate: synthesis, properties and application," Open Ceramics, vol. 8, p. 100177, 2021. DOI: https://doi.org/10.1016/j.oceram.2021.100177
J. Bai, W. K. Abdelbasset, S. M. Elkholi, K. A. Ismail, and M. N. Akhtar, "Efficient single and bi-layer absorbers of CaTiO3 micro-cubes and polypyrrole nanotubes composites for enhanced microwave absorption in X and Ku band," Ceramics International, 2022. DOI: https://doi.org/10.1016/j.ceramint.2022.01.044
S. S. Rajput, and S. Keshri, "Structural, vibrational and microwave dielectric properties of (1−x)Mg0.95Co0.05TiO3−(x)Ca0.8Sr0.2TiO3 ceramic composites," Journal of alloys and compounds, vol. 581, pp. 223-229, 2013. DOI: https://doi.org/10.1016/j.jallcom.2013.05.225
S. S. Rajput, S. Keshri, and V. R. Gupta, "Microwave dielectric properties of (1−x)Mg0.95Zn0.05TiO3–(x)Ca0.6La0.8/3TiO3 ceramic composites," Journal of alloys and compounds, vol. 552, pp. 219-226, 2013. DOI: https://doi.org/10.1016/j.jallcom.2012.10.019
Y. Zhang, X. Jiang, S. Ding, and T. Song, "Microwave dielectric property adjustment of CoZrNb2O8 ceramics by CaTiO3 addition," Journal of Materials Science: Materials in Electronics, vol. 32, pp. 12661-12670, 2021. DOI: https://doi.org/10.1007/s10854-021-05901-x
Y.-C. Chen, H.-X. Liu, C.-H. Li, J.-Y. Fu, and Y.-C. Cheng, "Influence of Ca0.8Sr0.2TiO3 on the microstructures and microwave dielectric properties of Nd0.96Yb0.04(Mg0.5Sn0.5)O3 Ceramics," Ferroelectrics Letters Section, vol. 42, pp. 1-9, 2015. DOI: https://doi.org/10.1080/07315171.2015.1007798
C. H. Shen, C. L. Pan, S. H. Lin, W. C. Lin, and S. K. Huang, "Low-fire processing (1-x)Mg0. 95Co0.05TiO3-xCa0.6La0.8/3TiO3 microwave dielectric ceramics," in Applied Mechanics and Materials, 2014, pp. 14-17.
K. Yan, M. Fujii, T. Karaki, and M. Adachi, "Microwave dielectric properties of Ca0.8Sr0.2TiO3–Li0.5Nd0.5TiO3 ceramics with near-Zero temperature coefficient of resonant frequency," Japanese Journal of Applied Physics, vol. 46, p. 7105, 2007. DOI: https://doi.org/10.1143/JJAP.46.7105
M. Saleem, Y. Iqbal, S. Qin, X. Wu, R. Muhammad, and F. Zhu, "Structural phase transition and microwave dielectric properties of Ca1−xSrxTiO3 (x= 0.1–0.9) ceramics," Journal of Materials Science: Materials in Electronics, vol. 26, pp. 1507-1511, 2015. DOI: https://doi.org/10.1007/s10854-014-2568-9
W. S. Kim, K. H. Yoon, and E. S. Kim, "Microwave dielectric properties and far‐infrared reflectivity characteristics of the CaTiO3–Li(1/2)−3xSm(1/2)+xTiO3 ceramics," Journal of the American Ceramic Society, vol. 83, pp. 2327-2329, 2000. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01557.x
R. Kell, A. Greenham, and G. Olds, "High‐permittivity temperature‐stable ceramic dielectrics with low microwave loss," Journal of the American Ceramic Society, vol. 56, pp. 352-354, 1973. DOI: https://doi.org/10.1111/j.1151-2916.1973.tb12684.x
P. Wise, I. Reaney, W. Lee, T. Price, D. Iddles, and D. Cannell, "Structure–microwave property relations in (SrxCa(1−x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001. DOI: https://doi.org/10.1016/S0955-2219(01)00102-9
C.-L. Huang, J.-T. Tsai, and Y.-B. Chen, "Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency," Materials research bulletin, vol. 36, pp. 547-556, 2001. DOI: https://doi.org/10.1016/S0025-5408(01)00528-1
H. M. Rietveld, "The rietveld method," Physica Scripta, vol. 89, p. 098002, 2014. DOI: https://doi.org/10.1088/0031-8949/89/9/098002
B. Hakki, and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960. DOI: https://doi.org/10.1109/TMTT.1960.1124749
S. Qin, X. Wu, F. Seifert, and A. I. Becerro, "Micro-Raman study of perovskites in the CaTiO3–SrTiO3 system," Journal of the Chemical Society, Dalton Transactions, pp. 3751-3755, 2002. DOI: https://doi.org/10.1039/B207228A
R. Li, Q. Tang, S. Yin, and T. Sato, "Performance of Ca1−xSrxTiO3 as barriers in dielectric barrier discharges with different Sr content," Journal of Physics D: Applied Physics, vol. 40, p. 5187, 2007. DOI: https://doi.org/10.1088/0022-3727/40/17/025
M. Ahmadipour, M. J. Abu, M. F. Ab Rahman, M. F. Ain, and Z. A. Ahmad, "Assessment of crystallite size and strain of CaCu3Ti4O12 prepared via conventional solid-state reaction," Micro & Nano Letters, vol. 11, pp. 147-150, 2016. DOI: https://doi.org/10.1049/mnl.2015.0562
M. Ahmadipour, M. Arjmand, A. T. Le, S. L. Chiam, Z. A. Ahmad, and S.-Y. Pung, "Effects of multiwall carbon nanotubes on dielectric and mechanical properties of CaCu3Ti4O12 composite," Ceramics International, vol. 46, pp. 20313-20319, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.05.119
M. Ahmadipour, M. Arjmand, M. F. Ain, Z. A. Ahmad, and S.-Y. Pung, "Effect of WO3 loading on structural, electrical and dielectric properties of CaCu3Ti4O12 ceramic composites," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 6806-6810, 2019. DOI: https://doi.org/10.1007/s10854-019-00992-z
S. Sasaki, C. T. Prewitt, J. D. Bass, and W. Schulze, "Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group," Acta Crystallographica Section C: Crystal Structure Communications, vol. 43, pp. 1668-1674, 1987. DOI: https://doi.org/10.1107/S0108270187090620
Y.-I. Kim, J. K. Jung, and K.-S. Ryu, "Structural study of nano BaTiO3 powder by Rietveld refinement," Materials Research Bulletin, vol. 39, pp. 1045-1053, 2004. DOI: https://doi.org/10.1016/j.materresbull.2004.03.001
U. t. Balachandran, and N. Eror, "Laser-induced Raman scattering in calcium titanate," Solid State Communications, vol. 44, pp. 815-818, 1982. DOI: https://doi.org/10.1016/0038-1098(82)90280-0
P. Gillet, F. Guyot, G. D. Price, B. Tournerie, and A. Le Cleach, "Phase changes and thermodynamic properties of CaTiO3. Spectroscopic data, vibrational modelling and some insights on the properties of MgSiO3 perovskite," Physics and Chemistry of Minerals, vol. 20, pp. 159-170, 1993. DOI: https://doi.org/10.1007/BF00200118
P. McMillan, and N. Ross, "The Raman spectra of several orthorhombic calcium oxide perovskites," Physics and Chemistry of Minerals, vol. 16, pp. 21-28, 1988. DOI: https://doi.org/10.1007/BF00201326
T. Hirata, K. Ishioka, and M. Kitajima, "Vibrational spectroscopy and X-ray diffraction of perovskite compounds Sr1−xMxTiO3 (M = Ca, Mg; 0≤x≤ 1)," Journal of solid state chemistry, vol. 124, pp. 353-359, 1996. DOI: https://doi.org/10.1006/jssc.1996.0249
V. Marques, L. Cavalcante, J. Sczancoski, E. Paris, J. Teixeira, J. A. Varela, F. S. De Vicente, M. R. Jopa, P. S. Pizani, M. S. Li, M. R. M. Santos, and E. Longo, "Synthesis of (Ca,Nd)TiO3 powders by complex polymerization, rietveld refinement and optical properties," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 74, pp. 1050-1059, 2009. DOI: https://doi.org/10.1016/j.saa.2009.08.049
D. T. M. Huong, N. H. Nam, and N. N. Long, "Preparation and optical characterization of Eu3+-doped CaTiO3 perovskite powders," Journal of alloys and compounds, vol. 537, pp. 54-59, 2012. DOI: https://doi.org/10.1016/j.jallcom.2012.05.087
B. Lewis, "Energy loss processes in ferroelectric ceramics," Proceedings of the Physical Society (1958-1967), vol. 73, p. 17, 1959. DOI: https://doi.org/10.1088/0370-1328/73/1/304
H.-J. Hagemann, "Loss mechanisms and domain stabilisation in doped BaTiO3," Journal of Physics C: Solid State Physics, vol. 11, p. 3333, 1978. DOI: https://doi.org/10.1088/0022-3719/11/15/031
A. Bisen, A. Satapathy, S. Parida, E. Sinha, S. Rout, and M. Kar, "Structural, optical band gap, microwave dielectric properties and dielectric resonant antenna studies of Ba(1−x)La(2x/3)ZrO3 (0⩽x⩽ 0.1) ceramics," Journal of alloys and compounds, vol. 615, pp. 1006-1012, 2014. DOI: https://doi.org/10.1016/j.jallcom.2014.07.007
R. Lowndes, F. Azough, R. Cernik, and R. Freer, "Structures and microwave dielectric properties of Ca(1−x)Nd2x/3TiO3 ceramics," Journal of the European Ceramic Society, vol. 32, pp. 3791-3799, 2012. DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.05.024
S. Parida, S. Rout, N. Gupta, and V. Gupta, "Solubility limits and microwave dielectric properties of Ca(ZrxTi1−x)O3 solid solution," Journal of alloys and compounds, vol. 546, pp. 216-223, 2013. DOI: https://doi.org/10.1016/j.jallcom.2012.08.076
J.-m. Li and T. Qiu, "Microwave sintering of Ca0.6La0.2667TiO3 microwave dielectric ceramics," International Journal of Minerals, Metallurgy, and Materials, vol. 19, pp. 245-251, 2012. DOI: https://doi.org/10.1007/s12613-012-0546-x
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
การอนุญาต
ลิขสิทธิ์ (c) 2022 วารสารโลหะ, วัสดุ และแร่
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.