The mechanochemistry of lanthanum dihydride (LaH\(_{2}\)) with hydrogen (H\(_{2}\)) using the ball-mill process and the effect of oxidation on the resulting products

ผู้แต่ง

  • Andika Widya PRAMONO Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Satrio HERBIROWO Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Agung IMADUDDIN Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Iwan Dwi ANTORO Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Heri NUGRAHA Research Center for Energy Conversion and Conservation - National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Hendrik Research Center for Metallurgy - National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Anung SYAMPURWADI Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Tangerang Selatan 15314, Banten, Indonesia
  • Ines Hayatun NUFUS Physics Study Program, Universitas Islam Negeri Sultan Maulana Hasanuddin, Gedung Dekanat Fakultas Sains, Kampus 2, Jalan Syekh Moh. Nawawi Albantani, Kemanisan, Kec. Curug, Kota Serang 42171, Banten, Indonesia
  • Nihayatul UMNA Physics Study Program, Universitas Islam Negeri Sultan Maulana Hasanuddin, Gedung Dekanat Fakultas Sains, Kampus 2, Jalan Syekh Moh. Nawawi Albantani, Kemanisan, Kec. Curug, Kota Serang 42171, Banten, Indonesia
  • Silvia Farah DIBA Physics Study Program, Universitas Islam Negeri Sultan Maulana Hasanuddin, Gedung Dekanat Fakultas Sains, Kampus 2, Jalan Syekh Moh. Nawawi Albantani, Kemanisan, Kec. Curug, Kota Serang 42171, Banten, Indonesia
  • Fina Fitratun AMALIYAH Physics Study Program, Universitas Islam Negeri Sultan Maulana Hasanuddin, Gedung Dekanat Fakultas Sains, Kampus 2, Jalan Syekh Moh. Nawawi Albantani, Kemanisan, Kec. Curug, Kota Serang 42171, Banten, Indonesia

DOI:

https://doi.org/10.55713/jmmm.v34i2.1825

คำสำคัญ:

ball-mill process, hydrogen storage, lanthanum dihydride, mechanochemistry, oxidation

บทคัดย่อ

The complex behavior of LaH2 during ball milling was investigated in this study, with its mechanical, chemical, and morphological changes explored. The relationship between milling time and hydrogen pressure reduction was uncovered through detailed experiments, reflecting the dynamic nature of the process. A transient yet significant event was observed upon unsealing the milling jar post-milling: the emergence of a minor fire ember, indicative of the interplay between mechanical forces and chemical reactivity within the LaH2 powder. Profound changes in the structure, composition, and shape were unraveled using advanced techniques such as X-ray diffraction (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), and particle size distribution analysis. The resulting powder exhibited a dual-phase composition of lanthanum dihydride (LaH2, 68.1% to 71.5%) and lanthanum oxide (La2O3, 28.5% to 31.9%), reflecting a dynamic chemical equilibrium during milling. Particle size distribution analysis revealed a notable increase in average diameter to 6420 nm, accompanied by a polydispersity index (PDI) of 0.831, signifying a broadening compared to the initial LaH2 powder. The morphological evolution of the powder was elucidated through SEM imaging, showing predominantly spherical and rounded forms, indicating extensive particle agglomeration and plastic deformation during milling. Additionally, the formation of oxide layers on the powder surface, intertwined with pronounced particle agglomeration, was highlighted through EDX mapping, shedding light on the mechanical aspects of morphological evolution during milling. These findings contribute to our understanding of LaH2 behavior under extreme mechanical and chemical conditions and have implications for materials processing, hydrogen storage technologies, and broader applications in materials science and engineering.

Downloads

Download data is not yet available.

เอกสารอ้างอิง

S. Raha, and Md. Ahmaruzzaman, “ZnO nanostructured materials and their potential applications: Progress, challenges, and perspectives,” Nanoscale Advances, vol. 4, no. 8, pp. 1868-1925, 2022 DOI: https://doi.org/10.1039/D1NA00880C

S. Yadav, R. Dixit, S. Sharma, S. Dutta, K. Solanki, and R. K. Sharma, “Magnetic metal–organic framework composites: Structurally advanced catalytic materials for organic transformations,” Materials Advances, vol. 2, no. 7, pp. 2153-2187, 2021 DOI: https://doi.org/10.1039/D0MA00982B

R. K. Sharma, S. Yadav, S. Dutta, H. B. Kale, I. R. Warkad, R. Zboril, R. S. Varma, and M. B. Gawande, “Silver nano-materials: Synthesis and (electro/photo) catalytic applications,” Chemical Society Reviews, vol. 50, no. 20, pp. 11293-11380, 2021. DOI: https://doi.org/10.1039/D0CS00912A

S. L. James, and T. Friščić, “Mechanochemistry,” Chemical Society Review, vol. 42, no. 18, p. 7494, 2013. DOI: https://doi.org/10.1039/c3cs90058d

T. Friščić, C. Mottillo, and H. M. Titi, “Mechanochemistry for synthesis,” Angewandte Chemie, vol. 132, no. 3, pp. 1030-1041, .2020. DOI: https://doi.org/10.1002/ange.201906755

X. Liu, Y. Li, L. Zeng, X. Li, N. Chen, S. Bai, H. He, Q. Wang, and C. Zhang, “A review on mechanochemistry: Approaching advanced energy materials with greener force,” Advanced Materials, vol. 34, no. 46, p. 2108327, 2022. DOI: https://doi.org/10.1002/adma.202108327

D. Tan, and F. García, “Main group mechanochemistry: From curiosity to established protocols,” Chemical Society Reviews, vol. 48, no. 8, pp. 2274-2292, 2019. DOI: https://doi.org/10.1039/C7CS00813A

L. Pasquini, K. Sakaki, E. Akiba, M. D. Allendorf, E. Alvares, J. R. Ares, D. Babai, M. Baricco, J. Beelosta von Colbe, M. Bereznitsky, C. E. Buckley, Y. W. Cho, F. Cuevas, P. de Rango, E. M. Dematteis, R. V. Denys, M. Dornheim, J. F. Fernandez, A. Harivadi, B. C. Hauback, T. W. Heo, M. Hirscher, T. D. Humphries, J. Huot, I. Jacob, T. R. Jensen, P. Jerabek, S. Y. Kang, N. Keilbart, H. Kim, M. Latroche, F. Leardini, H. Li, S. Ling, M. V. Lototskvv, R. Mullen, S-i. Orimo, M. Paskevicius, C. Pistidda, M. Polanski, J. Puszkiel, E. Rabkin, M. Sahlberg, S. Sartori, A. Santhosh, R. Z. Shneck, M. H. Sorby, Y. Shang, V. Stavila. J-Y. Suh, S. Suwamo, L. Thi Thu, L. F. Wan, C. J. Webb, M. Witman, C. Wan, B. C. Wood, and V. A. Yarys, “Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties,” Progress in Energy, vol. 4, no. 3, p. 032007, 2022. DOI: https://doi.org/10.1088/2516-1083/ac7190

S. Mateti, M. Mathesh, Z. Liu, T. Tao, T. Ramireddy, A. M. Glushenkov, W. Yang, and Y. lan Chen, “Mechanochemistry: A force in disguise and conditional effects towards chemical reactions,” Chemical Communications, vol. 57, no. 9, pp. 1080-1092, 2021 DOI: https://doi.org/10.1039/D0CC06581A

P. Cai, C. Wang, H. Gao, and X. Chen, “Mechanomaterials: A rational deployment of forces and geometries in programming functional materials,” Advanced Materials, vol. 33, no. 46, p. 2007977, 2021. DOI: https://doi.org/10.1002/adma.202007977

P. Dulian, “Solid-state mechanochemical syntheses of perovskites,” in Perovskite Materials: Synthesis, Characterisation, Properties, and Applications, vol. 1, L. Pan and G. Zhu, Eds., Rijeka, Croatia: IntechOpen, 2016, pp. 3-26. DOI: https://doi.org/10.5772/61521

V. Martinez, T. Stolar, B. Karadeniz, I. Brekalo, and K. Užarević, “Advancing mechanochemical synthesis by combining milling with different energy sources,” Nature Reviews Chemistry, vol. 7, no. 1, pp. 51-65, 2022. DOI: https://doi.org/10.1038/s41570-022-00442-1

G.-F. Han, F. Li, Z. W. Chen, C. Coppex, S-J. Kim, H-J. Noh, Z. fu. Y. Lu, C. V. Singh, S. Siahrostami, Q. Jiang, and J-B. Baek, “Mechanochemistry for ammonia synthesis under mild conditions,” Nature Nanotechnology, vol. 16, no. 3, pp. 325-330, Mar. 2021. DOI: https://doi.org/10.1038/s41565-020-00809-9

Y. Li, A. R. Zimmerman, F. He, J. Chen, L. Han, H. Chen X. Hu, and B. Gao, “Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue,” Science of The Total Environment, vol. 722, p. 137972, . 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.137972

J.-L. Do, and T. Friščić, “Chemistry 2.0: Developing a new, solvent-free system of chemical synthesis based on mechano-chemistry,” Synlett, vol. 28, no. 16, pp. 2066-2092, . 2017. DOI: https://doi.org/10.1055/s-0036-1590854

J. Cantway, “Solvent-free synthesis of metal coordination compounds using ball mills,” Master Thesis, Western Kentucky University, Bowling Green, Kentucky, 2020.

K. Ariga, T. Mori, and J. P. Hill, “Mechanical control of nanomaterials and nanosystems,” Advanced Materials, vol. 24, no. 2, pp. 158-176, 2012. DOI: https://doi.org/10.1002/adma.201102617

E. Gaffet, and G. Le Caer, “Mechanical processing for nano-materials,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 10, H. S. Nalwa, Ed., American Scientific Publishers, 2004, pp. 1-39.

T. Tsuzuki, “Mechanochemical synthesis of metal oxide nanoparticles,” Communications Chemistry, vol. 4, no. 1, p. 143, 2021. DOI: https://doi.org/10.1038/s42004-021-00582-3

M. Wang, W. Bi, X. Huang, and D. D. Y. Chen, “Ball mill assisted rapid mechanochemical extraction method for natural products from plants,” Journal of Chromatography A, vol. 1449, pp. 8-16, Jun. 2016. DOI: https://doi.org/10.1016/j.chroma.2016.04.044

S. Głowniak, B. Szczęśniak, J. Choma, and M. Jaroniec, “Mechanochemistry: Toward green synthesis of metal-organic frameworks,” Materials Today, vol. 46, pp. 109-124, 2021. DOI: https://doi.org/10.1016/j.mattod.2021.01.008

F. Chemat, M. Vian, A-S. Fabiano-Tixier, M. Nutrizio, A. R. Jambrak, P. E. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello, and G. Cravotto, “A review of sustainable and intensified techniques for extraction of food and natural products,” Green Chemistry, vol. 22, no. 8, pp. 2325-2353, 2020. DOI: https://doi.org/10.1039/C9GC03878G

M. Q. Farooq, N. M. Abbasi, and J. L. Anderson, “Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography,” Journal of Chromatography A, vol. 1633, p. 461613, . 2020. DOI: https://doi.org/10.1016/j.chroma.2020.461613

E. S. M. El-Sayed, and D. Yuan, “Reticular design and synthesis strategies of metal-organic frameworks,” in Reticular Chemistry and Applications: Metal-Organic Frameworks, vol. 11, Y. Belmabkhout and K. E. Cordova, Eds., Walter de Gruyter GmbH & Co KG, 2023, pp. 11-17. DOI: https://doi.org/10.1515/9781501524721-002

S. A. Younis, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim, and A. Deep, “Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications,” Coordination Chemistry Reviews, vol. 429, p. 213620, 2021. DOI: https://doi.org/10.1016/j.ccr.2020.213620

F. Palazon, Y. El Ajjouri, and H. J. Bolink, “Making by grinding: Mechanochemistry boosts the development of halide perovskites and other multinary metal halides,” Advanced Energy Materials, vol. 10, no. 13, p. 1902499, 2020. DOI: https://doi.org/10.1002/aenm.201902499

J. Martí-Rujas, “Structural elucidation of microcrystalline MOFs from powder X-ray diffraction,” Dalton Transactions, vol. 49, no. 40, pp. 13897-13916, 2020. DOI: https://doi.org/10.1039/D0DT02802A

X. Zhang, J. Zheng, Y. Wang, Z. Wang, L. Zheng, A. Nozariasbarz, K. Tao, B. Ma, B. Poudel, K. Wang, and T. Ye, “Solvent-free synthetic protocols for halide perovskites,” Inorganic Chemistry Frontiers, vol. 10, no. 12, pp. 3468-3488, 2023. DOI: https://doi.org/10.1039/D3QI00163F

P. Ying, J. Yu, and W. Su, “Liquid‐assisted grinding mechano-chemistry in the synthesis of pharmaceuticals,” Advanced Synthesis Catalysis, vol. 363, no. 5, pp. 1246-1271, 2021. DOI: https://doi.org/10.1002/adsc.202001245

P. Baláž, M. Baláž, M. Achimovičová, Z. Bujňáková, and E. Dutková, “Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review),” Journal of Materials Science, vol. 52, no. 20, pp. 11851-11890, 2017. DOI: https://doi.org/10.1007/s10853-017-1174-7

S. Zhang, Q. Yang, C. Wang, X. Luo, J. Kim, Z. Wang, Y. Yamauchi,“Porous organic frameworks: Advanced materials in analytical chemistry,” Advanced Science, vol. 5, no. 12, p. 1801116, 2018. DOI: https://doi.org/10.1002/advs.201801116

K. J. Ardila‐Fierro, and J. G. Hernández, “Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry,” ChemSusChem, vol. 14, no. 10, pp. 2145-2162, 2021. DOI: https://doi.org/10.1002/cssc.202100478

R. B. N. Baig, and R. S. Varma, “Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis,” Chemical Society Reviews, vol. 41, no. 4, pp. 1559-1584, 2012. DOI: https://doi.org/10.1039/C1CS15204A

R. S. Varma, “Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation,” Green Chemistry, vol. 16, no. 4, p. 2027, 2014. DOI: https://doi.org/10.1039/c3gc42640h

M. Hirscher, V. A. Yartys, M. Baricco, J. M. Bellosta von Colbe, D. Blanchard, R. Bowman, D. P. Broom, C. E. Buckley, F. Chang, P. Chen, Y. W. Cho, J-C. Crivello, F. Cuevas, W. I. F. David, P. E. de Jongh, R. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G. E. Froudakis, D. M. Grant, E. M. Gray, B. C. Hauback, T. He, T. D. Humphries, T. R. Jensen, S. Kim, Y. Kojima, M. Latroche, L. Hai-Wen, M. V. Lototskyy, J. W. Makepeace, K. T. Moller, L Naheed, P. Ngene, D. Noreus, M. M. Nygard, O. Shin-ichi, M. Paskevicius, L. Pasquini, D. B. Ravnsbaek, M. V. Sofianos, T. J. Udovic, T. Vegge, G. S. Walker, C. J. Webb, C. Weidenthaler, and C. Zlotea, “Materials for hydrogen-based energy storage – past, recent progress and future outlook,” Journal of Alloys and Compounds, vol. 827, p. 153548, 2020. DOI: https://doi.org/10.1016/j.jallcom.2019.153548

S. K. Gupta, and P. K. Jha, “Dynamical stability of the lanthanum dihydride under high pressure: A density functional lattice dynamics approach,” International Journal of Hydrogen Energy, vol. 38, no. 11, pp. 4654-4663, 2013. DOI: https://doi.org/10.1016/j.ijhydene.2013.01.179

A. Machida, T. Watanuki, D. Kawana, and K. Aoki, “Phase separation of lanthanum hydride under high pressure,” Physical Review B, vol. 83, no. 5, p. 054103, 2011. DOI: https://doi.org/10.1103/PhysRevB.83.054103

D. Tang, G-L. Tan, G-W. Li, J-G. Liang, S. M. Ahmad, A. Bahadur, M. Humayun, H. Ullah, A. Khan, and M. Bououdina, “State-of-the-art hydrogen generation techniques and storage methods: A critical review,” Journal of Energy Storage, vol. 64, p. 107196, 2023. DOI: https://doi.org/10.1016/j.est.2023.107196

Q. Hassan, I. D. J. Azzawi, A. Z. Sameen, and H. M. Salman, “Hydrogen fuel cell vehicles: Opportunities and challenges,” Sustainability, vol. 15, no. 15, p. 11501, 2023. DOI: https://doi.org/10.3390/su151511501

P. Ragupathy, S. D. Bhat, and N. Kalaiselvi, “Electrochemical energy storage and conversion: An overview,” WIREs Energy and Environment, vol. 12, no. 2, 2023. DOI: https://doi.org/10.1002/wene.464

F. Schüth, “Challenges in hydrogen storage,” The European Physical Journal Special Topics, vol. 176, no. 1, pp. 155-166, Sep. 2009. DOI: https://doi.org/10.1140/epjst/e2009-01155-x

S. Dunn, “Hydrogen futures: toward a sustainable energy system,” International Journal of Hydrogen Energy, vol. 27, no. 3, pp. 235-264, 2002. DOI: https://doi.org/10.1016/S0360-3199(01)00131-8

V. Sethi, X. Sun, D. Nalianda, A. Rolt, P. Holborn, C. Wijesinghe, C. Xisto, I. J. H. Jonsson, T. Gronstedt J. M. Ingram, A. Lundbladh, A. T. Isikveren, I. Williamson, T. Harrison, and A. Yenokyan, “Enabling cryogenic hydrogen-based CO2-free air transport: Meeting the demands of zero carbon aviation,” IEEE Electrification Magazine, vol. 10, no. 2, pp. 69-81, 2022.. DOI: https://doi.org/10.1109/MELE.2022.3165955

T. Huebert, L. Boon-Brett, and W. J. Buttner, Sensors for safety and process control in hydrogen technologies. Boca Raton, Florida: CRC Press, 2016.

A. Iskandarov, T. Tada, S. Iimura, and H. Hosono, “Characteristic mechanism for fast H− conduction in LaH2.5O0.25,” Acta Materialia, vol. 230, p. 117825, 2022. DOI: https://doi.org/10.1016/j.actamat.2022.117825

Y. Sakurai, A. Machida, and K. Aoki, “Vibrational spectroscopy studies of a pressure-induced disproportionation reaction of LaH2,” Solid State Communications, vol. 151, no. 11, pp. 815-817, 2011. DOI: https://doi.org/10.1016/j.ssc.2011.03.028

I. G. Ratishvili, and P. Vajda, “Hydrogen ordering in super-stoichiometric rare-earth hydrides for a system with an energy-constants ratio p = V2/V1<1: LaH2+x,” Physical Review B, vol. 53, no. 2, pp. 581-587, 1996.

J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, and M. Beltowska-Brzezinska, “Electrochemical behavior of metal hydrides,” Journal of Solid State Electro-chemistry, vol. 5, no. 4, pp. 229-249, 2001. DOI: https://doi.org/10.1007/s100080000149

Ch. Christodoulou, G. Karagiorgis, A. Poullikkas, N. Lymberopoulos, and E. Varkaraki, “A review on hydrogen storage technologies,” The Cyprus Journal of Science and Technology, vol. 4, no. 3, pp. 72-144, 2005.

J. Fan, Z. Yang, and S. Dai, “Construction of conjugated scaffolds driven by mechanochemistry towards energy storage applications,” Green Chemical Engineering, 2023. DOI: https://doi.org/10.1016/j.gce.2023.04.001

Samriti, R. Tyagi, O. Ruzimuradov, and J. Prakash, “Fabrication methods and mechanisms for designing highly-efficient photo-catalysts for energy and environmental applications,” Materials Chemistry and Physics, vol. 307, p. 128108, 2023. DOI: https://doi.org/10.1016/j.matchemphys.2023.128108

R. Dubadi, S. D. Huang, and M. Jaroniec, “Mechanochemical synthesis of nanoparticles for potential antimicrobial applications,” Materials, vol. 16, no. 4, p. 1460, 2023. DOI: https://doi.org/10.3390/ma16041460

F. Cuccu, L. De Luca, F. Delogu, E. Colacino, N. Solin, R. Mocci, and A. Porcheddu, “Mechanochemistry: New tools to navigate the uncharted territory of ‘impossible’ reactions,” ChemSusChem, vol. 15, no. 17, 2022. DOI: https://doi.org/10.1002/cssc.202200362

Z. Yin, Q. Zhang, S. Li, G. Cagnetta, J. Huang, S. Deng, and G. Yu, “Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective,” Science of The Total Environment, vol. 825, p. 153992, 2022. DOI: https://doi.org/10.1016/j.scitotenv.2022.153992

F. Delogu, G. Gorrasi, and A. Sorrentino, “Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives,” Progress Materials Science, vol. 86, pp. 75-126, 2017. DOI: https://doi.org/10.1016/j.pmatsci.2017.01.003

Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, and F. Pan, “Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials,” Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1922-1941, 2021. DOI: https://doi.org/10.1016/j.jma.2021.10.002

N. Abid, A. M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imron, J. Haider, M. Khan, Q. Khan, and M. Maqbool, “Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review,” Advances in Colloid and Interface Science, vol. 300, p. 102597, 2022. DOI: https://doi.org/10.1016/j.cis.2021.102597

C. Suryanarayana, A. A. Al-Joubori, and Z. Wang, “Nano-structured materials and nanocomposites by mechanical alloying: An overview,” Metals and Materials International, vol. 28, no. 1, pp. 41-53, 2022. DOI: https://doi.org/10.1007/s12540-021-00998-5

C. Shuai, C. He, S. Peng, F. Qi, G. Wang, A. Min, W. Yang, and W. Wang, “Mechanical alloying of immiscible metallic systems: Process, microstructure, and mechanism,” Advanced Engineering Materials, vol. 23, no. 4, p. 2001098, 2021. DOI: https://doi.org/10.1002/adem.202001098

M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Progress in Materials Science, vol. 51, no. 4, pp. 427-556, 2006. DOI: https://doi.org/10.1016/j.pmatsci.2005.08.003

R. Daassi, K. Durand, D. Rodrigue, and T. Stevanovic, “Optimization of the electrospray process to produce lignin nanoparticles for PLA-based food packaging,” Polymers (Basel), vol. 15, no. 13, p. 2973, 2023. DOI: https://doi.org/10.3390/polym15132973

M. J. Masarudin, S. M. Cutts, B. J. Evison, D. R. Phillips, and P. J. Pigram, “Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin,” Nanotechnology Science and Applications, vol. 8, pp. 67-80, 2015. DOI: https://doi.org/10.2147/NSA.S91785

G. Ren, H. Su, and S. Wang, “The combined method to synthesis silica nanoparticle by Stöber process,” Journal of Sol-Gel Science and Technology, vol. 96, no. 1, pp. 108-120, 2020. DOI: https://doi.org/10.1007/s10971-020-05322-y

J. G. Whiting, E. J. Garboczi, V. N. Tondare, J. H. J. Scott, M. A. Donmez, and S. P. Moylan, “A comparison of particle size distribution and morphology data acquired using lab-based and commercially available techniques: Application to stainless steel powder,” Powder Technology, vol. 396, pp. 648-662, 2022. DOI: https://doi.org/10.1016/j.powtec.2021.10.063

H. Runyan, R. A. Reynolds, and D. Stramski, “Evaluation of particle size distribution metrics to estimate the relative contributions of different size fractions based on measurements in Arctic waters,” Journal of Geophysical Research: Oceans, vol. 125, no. 6, 2020. DOI: https://doi.org/10.1029/2020JC016218

H. G. Merkus, “Particle size, size distributions, and shape,” in Particle Size Measurements: Fundamentals, Practice, Quality, Springer Dordrecht, 2009, pp. 13-42. DOI: https://doi.org/10.1007/978-1-4020-9016-5_2

A. Machida, T. Watanuki, D. Kawana, and K. Aoki, “Disproportionation reaction of LaH2 at high pressure and low temperature,” Journal of Physics: Conference Series, vol. 500, no. 2, p. 022001, 2014. DOI: https://doi.org/10.1088/1742-6596/500/2/022001

E. Boroch, K. Conder, C. Ru-Xiu, and E. Kaldis, “An X-ray investigation of the phase relationships in the system LaH2 LaH3,” Journal of the Less Common Metals, vol. 156, no. 1-2, pp. 259–271, 1989. DOI: https://doi.org/10.1016/0022-5088(89)90424-4

H. M. Beakawi Al-Hashemi and O. S. Baghabra Al-Amoudi, “A review on the angle of repose of granular materials,” Powder Technology, vol. 330, pp. 397-417, 2018. DOI: https://doi.org/10.1016/j.powtec.2018.02.003

N. J. John, I. Khan, S. Kandalai, and A. Patel, “Particle breakage in construction materials: A geotechnical perspective,” Construction and Building Materials, vol. 381, p. 131308, Jun. 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131308

N. C. Balaji, M. Mani, and B. V. V. Reddy, “Discerning heat transfer in building materials,” Energy Procedia, vol. 54, pp. 654-668, 2014. DOI: https://doi.org/10.1016/j.egypro.2014.07.307

A. Nouri, and A. Sola, “Metal particle shape: A practical perspective,” Metal Powder Report, vol. 73, no. 5, pp. 276-282, 2018. DOI: https://doi.org/10.1016/j.mprp.2018.04.001

S. R. J. Saunders, M. Monteiro, and F. Rizzo, “The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapor: A review,” Progress in Materials Science, vol. 53, no. 5, pp. 775-837, 2008. DOI: https://doi.org/10.1016/j.pmatsci.2007.11.001

A. S. Khanna, “High-temperature oxidation,” in Handbook of Environmental Degradation of Materials, Elsevier, 2005, pp. 105–152. DOI: https://doi.org/10.1016/B978-081551500-5.50008-2

G. Liang, S. Boily, J. Huot, A. V. Neste, and R. Schulz, “Hydrogen absorption properties of a mechanically milled Mg–50 wt% LaNi5 composite,” Jourenal of Alloys and Compounds, vol. 268, no. 1–2, pp. 302-307, 1998. DOI: https://doi.org/10.1016/S0925-8388(97)00607-5

J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, “Yttrium and lanthanum hydride films with switchable optical properties,” Nature, vol. 380, no. 6571, pp. 231-234, 1996. DOI: https://doi.org/10.1038/380231a0

E. J. Goon, “The non-stoichiometry of lanthanum hydride,” Journal of Physical Chemistry, vol. 63, no. 12, pp. 2018-2021, 1959. DOI: https://doi.org/10.1021/j150582a010

M. Pozzo, and D. Alfè, “Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces,” International Journal of Hydrogen Energy, vol. 34, no. 4, pp. 1922-1930, 2009. DOI: https://doi.org/10.1016/j.ijhydene.2008.11.109

M. Pozzo, D. Alfè, A. Amieiro, S. French, and A. Pratt, “Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces,” Journal of Chemical Physics, vol. 128, no. 9, 2008. DOI: https://doi.org/10.1063/1.2835541

R. Xu, Z. Tan, D-B. Xiong, G. Fan, Q. Guo, J. Zhang, Y. Su, Z. Li, and D. Zhang, “Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling,” Composites Part A Applied Science and Manufacturing, vol. 96, pp. 57-66, 2017. DOI: https://doi.org/10.1016/j.compositesa.2017.02.017

L. Lu, and M. O. Lai, Mechanical alloying. Boston, Dordrecht, London: Kluwer Academic Publishers, 1998.

S. A. Hewitt, and K. A. Kibble, “Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites,” International Journal of Refractory Metals Hard Materials, vol. 27, no. 6, pp. 937-948, 2009. DOI: https://doi.org/10.1016/j.ijrmhm.2009.05.006

T. Singh, S. K. Tiwari, and D. K. Shukla, “Novel method of nanoparticle addition for friction stir welding of aluminum alloy,” Advances in Materials and Processing Technologies, vol. 8, no. 1, pp. 1160-1172, 2022. DOI: https://doi.org/10.1080/2374068X.2020.1855397

N. N. Obradović, W. G. Fahenholtz, S. Filipovic, D. Kosanovic, A. Dapcevic, A. Dordevic, I. Balac, and V. B. Pavlovic,“The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics,” Ceramics International, vol. 45, no. 9, pp. 12015-12021, 2019. DOI: https://doi.org/10.1016/j.ceramint.2019.03.095

N. Le Bolay, “On agglomeration phenomena in ball mills: application to the synthesis of composite materials,” Powder Technology, vol. 130, no. 1-3, pp. 450-455, 2003. DOI: https://doi.org/10.1016/S0032-5910(02)00249-8

M.-G. Li, C.-J. Sun, S.-H. Gau, and C.-J. Chuang, “Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash,” Journal of Hazardous Materials, vol. 174, no. 1-3, pp. 586-591, 2010. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.092

Q. Fang, and Z. Kang, “An investigation on morphology and structure of Cu–Cr alloy powders prepared by mechanical milling and alloying,” Powder Technology, vol. 270, pp. 104-111, 2015. DOI: https://doi.org/10.1016/j.powtec.2014.10.010

C. Suryanarayana, “Mechanical alloying and milling,” Mechanical Alloying and Milling, vol. 46, pp. 1-472, 2004. DOI: https://doi.org/10.1201/9780203020647.ch1

T. Prasad Yadav, R. Manohar Yadav, and D. Pratap Singh, “Mechanical milling: A top-down approach for the synthesis of nanomaterials and nanocomposites,” Nanoscience and Nanotechnology, vol. 2, no. 3, pp. 22-48, 2012. DOI: https://doi.org/10.5923/j.nn.20120203.01

N. Ao, D. Liu, X. Zhang, and C. Liu, “Enhanced fatigue performance of modified plasma electrolytic oxidation coated Ti-6Al-4V alloy: Effect of residual stress and gradient nano-structure,” Applied Surface Science, vol. 489, pp. 595-607, Sep. 2019. DOI: https://doi.org/10.1016/j.apsusc.2019.06.006

L. Takacs, “Self-sustaining reactions induced by ball milling,” Progress in Materials Science, vol. 47, no. 4, pp. 355-414, 2002. DOI: https://doi.org/10.1016/S0079-6425(01)00002-0

B. Fullenwider, P. Kiani, J. M. Schoenung, and K. Ma, “Two-stage ball milling of recycled machining chips to create an alternative feedstock powder for metal additive manufacturing,” Powder Technology, vol. 342, pp. 562-571, 2019. DOI: https://doi.org/10.1016/j.powtec.2018.10.023

M. Ramezani, and T. Neitzert, “Mechanical milling of aluminum powder using planetary ball milling process,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 55, no. 2, pp. 790-798, 2012.

M. Toozandehjani, K. Matori, F. Ostovan, S. Abdul Aziz, and M. Mamat, “Effect of milling time on the microstructure, physical, and mechanical properties of Al-Al2O3 nanocomposite synthesized by ball milling and powder metallurgy,” Materials, vol. 10, no. 11, p. 1232, 2017. DOI: https://doi.org/10.3390/ma10111232

S. Kim, and W. S. Choi, “Analysis of ball movement for research of grinding mechanism of a stirred ball mill with 3D discrete element method,” Korean Journal of Chemical Engineering, vol. 25, no. 3, pp. 585-592, 2008. DOI: https://doi.org/10.1007/s11814-008-0099-x

P. Muhayimana, J. K. Kimotho, and H. M. Ndiritu, “A review of ball mill grinding process modeling using discrete element method,” in Proceedings of the Sustainable Research and Innovation (SRI) Conference, 2022, pp. 221-229.

X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, “Effects of topography and composition of titanium surface oxides on osteoblast responses,” Biomaterials, vol. 25, no. 18, pp. 4087-4103, 2004. DOI: https://doi.org/10.1016/j.biomaterials.2003.11.011

N. A. Che Lah, A. Kamaruzaman, and S. Trigueros, “pH-dependent formation of oriented zinc oxide nanostructures in the presence of tannic acid,” Nanomaterials, vol. 11, no. 1, p. 34, 2020. DOI: https://doi.org/10.3390/nano11010034

M. Kušter, J. Kovac, Z. Samardzija, M. Komelj, S. S. Parapari, M. Podlogar, J-M. Dubois, and S. Sturm,“Impact of tuned oxidation on the surface energy of sintered samples produced from atomized B-doped Al-Cu-Fe quasicrystalline powders,” Crystals (Basel), vol. 13, no. 6, p. 859, 2023. DOI: https://doi.org/10.3390/cryst13060859

S. Mangal, F. Meiser, G. Tan, T. Gengenbach, D. A. V. Morton, and I. Larson, “Applying surface energy derived cohesive–adhesive balance model in predicting the mixing, flow and compaction behavior of interactive mixtures,” European Journal of Pharmaceutics and Bioplarm, vol. 104, pp. 110-116, 2016. DOI: https://doi.org/10.1016/j.ejpb.2016.04.021

ดาวน์โหลด

เผยแพร่แล้ว

2024-06-04

วิธีการอ้างอิง

[1]
A. W. PRAMONO, “The mechanochemistry of lanthanum dihydride (LaH\(_{2}\)) with hydrogen (H\(_{2}\)) using the ball-mill process and the effect of oxidation on the resulting products”, J Met Mater Miner, ปี 34, ฉบับที่ 2, น. 1825, มิ.ย. 2024.

ฉบับ

บท

Original Research Articles