Synthesis of carbon nanowalls by oxy-acetylene torch method

Authors

  • Bauyrzhan ZHUMADILOV l-Farabi Kazakh National University, Physical-technical faculty, 050040 Almaty, Kazakhstan; National Nanotechnological Laboratory Open Type, al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan https://orcid.org/0000-0001-5784-3840
  • Aidar KENZHEGULOV JSC “Institute of Metallurgy and Ore Beneficiation”, Satbayev University, 050010 Almaty, Kazakhstan
  • Renata NEMKAYEVA National Nanotechnological Laboratory Open Type, al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan; Kazakh-British Technical University, 050000 Almaty, Kazakhstan https://orcid.org/0000-0002-8782-703X
  • Gulmira PARTIZAN al-Farabi Kazakh National University, Physical-technical faculty, 050040 Almaty, Kazakhstan https://orcid.org/0000-0002-1989-8282
  • Yerassyl YERLANULY al-Farabi Kazakh National University, Physical-technical faculty, 050040 Almaty, Kazakhstan; National Nanotechnological Laboratory Open Type, al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan; Kazakh-British Technical University, 050000 Almaty, Kazakhstan https://orcid.org/0000-0001-6757-1041
  • Maratbek GADBULLIN National Nanotechnological Laboratory Open Type, al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan; Kazakh-British Technical University, 050000 Almaty, Kazakhstan https://orcid.org/0000-0003-4853-3642

DOI:

https://doi.org/10.55713/jmmm.v33i4.1806

Keywords:

carbon nanowalls, oxy-acetylene torch, scanning electron microscopy, Raman spectroscopy

Abstract

This work presents a relatively new method for the synthesis of carbon nanowalls (CNWs) based on oxy-acetylene torch as a function of deposition time. The morphological and structural properties of the obtained CNW films were studied by scanning electron microscopy and Raman spectroscopy. Changes in the morphology and structural properties of the CNW films depending on the synthesis time were revealed. Shorter growth times lead to the formation of thinner CNW films with a dense labyrinth-like structure, while longer growth times lead to thicker CNW films with a petal-like structure. In addition, this study opens up the possibility of synthesizing CNWs on a production scale, since the proposed method is relatively environmentally friendly and efficient from an economical point of view.

Downloads

Download data is not yet available.

References

E. Inshakova, and A. Inshakova, “Nanomaterials and nano-technology: Prospects for technological re-equipment in the power engineering industry,” in IOP Conference Series: Materials Science and Engineering, 2020.

Z.-L. Xu, J.-K. Kim, and K. Kang, “Carbon nanomaterials for advanced lithium sulfur batteries,” Nano Today, vol. 19, pp. 84-107, 2018.

A. Roshani, M. Mousavizadegan, and M. Hosseini, “Carbon nanomaterials-based sensors for biomedical applications,” in Carbon Nanomaterials-Based Sensors, Elsevier, 2022, pp. 59-75.

S. Doddamani, V. H. Mariswamy, V. K. Boraiah, and S. Ningaiah, “Trends in carbon nanomaterial-based sensors in the food industry,” in Carbon Nanomaterials-Based Sensors, Elsevier, 2022, pp. 95-103.

U. Chadha, S. K. Selvaraj, S. V. Thanu, V. Cholapadath, A. Abraham, M. Zaiyan, and M. Manoharan, “A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater,” Materials Research Express, vol. 9, no. 1, p. 012003, 2022.

V. Stankus, A. Vasiliauskas, A. Guobienė, M. Andrulevičius, and Š. Meškinis, “Direct synthesis of graphene on silicon by reactive magnetron sputtering deposition,” Surface and Coatings Technology, vol. 437, p. 128361, 2022.

A. Artigas, C. Castanyer, N. Roig, A. Lledo, M. Sola, A. Pla-Quintana, and A. Roglans, “Synthesis of fused dihydroazepine derivatives of fullerenes by a Rh‐catalyzed cascade process,” Advance Synthesis & Catalysis, vol. 363, no. 15, pp. 3835-3844, 2021.

A. Katzensteiner, J. M. Rosalie, R. Pippan, and A. Bachmaier, “Synthesis of nanodiamond reinforced silver matrix nano-composites: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 782, p. 139254, 2020.

A. Hirsch, “The era of carbon allotropes,” Nature Materials, vol. 9, no. 11, pp. 868-871, 2010.

A. Mostofizadeh, Y. Li, B. Song, and Y. Huang, “Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials,” Journal of Nanomaterials, vol. 2011, pp. 1-21, 2011.

Y. Wu, P. Qiao, T. Chong, and Z. Shen, “Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition,” Advanced Materials., vol. 14, no. 1, pp. 64-67, 2002.

P. A. Tran, L. Zhang, and T. J. Webster, “Carbon nanofibers and carbon nanotubes in regenerative medicine,” Advanced Drug Delivery Reviews, vol. 61, no. 12, pp. 1097-1114, 2009.

R. Eivazzadeh-Keihan, E. B. Noruzi, E. Chidar, M. Jafari, F. Davoodi, A. Kashtiaray, M. G. Gorab, S. M. Hashemi, S. Javanshir, R. A. Cohan, A. Maleki, and M. Mahdavi, “Applications of carbon-based conductive nanomaterials in biosensors,” Chemical Engineering Journal, vol. 442, p. 136183, 2022.

H. Liu, S. An, X. Sun, X. Han, J. Cui, Y. Zhang, and W. He “Multi-layer unbonded nickel foam/carbon nanotube array/ Ni-Co bimetallic sulfide as high-performance electrode materials for supercapacitors,” Colloids Surfaces A Physicochemical and Engineering Aspects, vol. 629, p. 127426, 2021.

Y. Xiao, A. Dai, X. Zhao, S. Wu, D. Su, X. Wang, and S. Fang, “A comparative study of one-dimensional and two-dimensional porous CoO nanomaterials for asymmetric supercapacitor,” Journal of Alloys and Compounds, vol. 781, pp. 1006-1012, 2019.

F. Cheng, X. Yang, S. Zhang, and W. Lu, “Boosting the supercapacitor performances of activated carbon with carbon nanomaterials,” J. Power Sources, vol. 450, p. 227678, 2020.

S. Shahidi, and B. Moazzenchi, “Carbon nanotube and its applications in textile industry – A review,” Journal of The Textile Institute vol. 109, no. 12, pp. 1653-1666, 2018.

M. Hiramatsu, H. Kondo, and M. Hori, “Graphene nanowalls,” in New Progress on Graphene Research, InTech, 2013.

M. Hiramatsu, and M. Hori, Carbon Nanowalls. Vienna: Springer Vienna, 2010.

Q. Yang, J. Wu, S. Li, L. Zhang, F. Junchi, F. Huang, Q. Cheng, “Vertically-oriented graphene nanowalls: Growth and application in Li-ion batteries,” Diamond and Related Materials, vol. 91, pp. 54-63, 2019.

Y. Yerlanuly, R. Zhumadilov, R. Nemkayeva, B. Uzakbaiuly, A. Beisenbayev, Z. Bakenov, T. Rammazanov, M. Gabdullin, A. Ng, V. Brus, and A. N. Jumabekov, “Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time,”Scientific Reports, vol. 11, no. 1, p. 19287, 2021.

S. Kawai, S. Kondo, W. Takeuchi, H. Kondo, M. Hiramatsu, and M. Hori, “Optical properties of evolutionary grown layers of carbon nanowalls analyzed by spectroscopic ellipsometry,” Japanese Journal of Applied Physics, vol. 49, no. 6, p. 060220, 2010.

W. Takeuchi, M. Ura, M. Hiramatsu, Y. Tokuda, H. Kano, and M. Hori, “Electrical conduction control of carbon nanowalls,” Applied Physics Letters, vol. 92, no. 21, p. 213103, 2008.

S. H. Kwon, H. J. Kim, W. S. Choi, and H. Kang, “Development and performance analysis of carbon nanowall-based mass sensor,” Journal of Nanoscience and Nanotechnology., vol. 18, no. 9, pp. 6552–6554, 2018.

L. Liu, T. Guan, L. Fang, F. Wu, Y. Lu, H. Luo, X. Song, M. Zhou, B. Hu, D. Wei, and H. Shi, “Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor,” Journal of Alloys and Compounds, vol. 763, pp. 926-934, 2018.

E. Ghoniem, S. Mori, and A. Abdel-Moniem, “An efficient strategy for transferring carbon nanowalls film to flexible substrate for supercapacitor application,”Journal of Power Sources, vol. 493, p. 229684, 2021.

S. Hussain, R. Amade, A. Boyd, A. Musheghyan-Avetisyan, I. Alshaikh, J. Marti-Gonzalez, E. Pascual, B. J. Meenan, and E. Bertran-Serra, “Three-dimensional Si/vertically oriented graphene nanowalls composite for supercapacitor applications,” Ceramics International, vol. 47, no. 15, pp. 21751-21758, 2021.

G. Lin, H. Wang, L. Zhang, Q. Cheng, Z. Gong, and K. (Ken) Ostrikov, “Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries,” Journal of Power Sources, vol. 437, p. 226909, 2019.

X. Chen, T. Xiao, S. Wang, J. Li, P. Xiang, L. Jiang, and X. Tan, “Superior Li-ion storage performance of graphene decorated NiO nanowalls on Ni as anode for lithium ion batteries,” Materials Chemisty and Physics, vol. 222, pp. 31-36, 2019.

F. Bohlooli, A. Anagri, and S. Mori, “Development of carbon- based metal free electrochemical sensor for hydrogen peroxide by surface modification of carbon nanowalls,” Carbon New York, vol. 196, pp. 327-336, 2022.

M. Sookhakian, E. Zalnezhad, and Y. Alias, “Layer-by-layer electrodeposited nanowall-like palladium-reduced graphene oxide film as a highly-sensitive electrochemical non-enzymatic sensor,” Sensors and Actuators B Chemical, vol. 241, pp. 1-7, 2017.

S. C. Shin, A. Yoshimura, T. Matsuo, M. Mori, M. Tanimura, A. Ishihara, K-i. Ota, and M. Tachibana, “Carbon nanowalls as platinum support for fuel cells,” Journal of Applied Physics, vol. 110, no. 10, p. 104308, 2011.

W. Wei, and Y. H. Hu, “Highly conductive Na-embedded carbon nanowalls for hole-transport-material-free perovskite solar cells without metal electrodes,” Journal of Materials Chemistry A, vol. 5, no. 46, pp. 24126-24130, 2017.

W. Maiaugree, A. Tangtrakarn, S. Lowpa, N. Ratchapolthavisin, and V. Amornkitbamrung, “Facile synthesis of bilayer carbon/Ni3S2 nanowalls for a counter electrode of dye-sensitized solar cell,” Electrochimica Acta, vol. 174, pp. 955-962, 2015,.

S. Ghosh, S. R. Polaki, M. Kamruddin, S. M. Jeong, and K. (Ken) Ostrikov, “Plasma-electric field controlled growth of oriented graphene for energy storage applications,” Journal of Physics D: Applied Physics, vol. 51, no. 14, p. 145303, 2018.

A.-Y. Kim, R. E. A. Ardhi, G. Liu, J. Y. Kim, H-J. Shin, D. Byun, and J. K. Lee, “Hierarchical hollow dual Core–Shell carbon nanowall-encapsulated p–n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage,” Carbon New York, vol. 153, pp. 62-72, 2019.

P. Russo, M. Xiao, and N. Y. Zhou, “Carbon nanowalls: A new material for resistive switching memory devices,” Carbon New York, vol. 120, pp. 54-62, 2017.

T. Itoh, “Synthesis of carbon nanowalls by hot-wire chemical vapor deposition,” Thin Solid Films, vol. 519, no. 14, pp. 4589-4593, 2011.

T. Itoh, S. Shimabukuro, S. Kawamura, and S. Nonomura, “Preparation and electron field emission of carbon nanowall by Cat-CVD,” Thin Solid Films, vol. 501, no. 1-2, pp. 314-317, 2006.

B. Sharma, R. Kar, A. R. Pal, S. Ramakrishan, R. O. Dusane, D. S. Patil, S. R. Suryawanshi, M. A. More, and S. Sinha, “Investigations on the transformation of vertically aligned CNTs to intramolecular junctions by atmospheric pressure PECVD,” Materials Today Communications, vol. 16, pp. 178-185, 2018.

B. Sharma, R. Kar, A. R. Pal, R. K. Shilpa, R. Dusane, D. S. Patil, S. R. Suryawanshi, M. More, and S. Sinha, “Role of hydrogen diffusion in temperature-induced transformation of carbon nanostructures deposited on metallic substrates by using a specially designed fused hollow cathode cold atmospheric pressure plasma source,” Journal of Physics D: Applied Physics, vol. 50, no. 15, p. 155207, 2017.

J. Li, S. Su, V. Kundrat, A. M. Abbot, H. Ye, L. Zhou, F. Mushtaq, D. Ouyang, D. James, and D. Robert“,Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers,” Journal of Applied Physics, vol. 113, no. 2, p. 024313, 2013.

A. T. H. Chuang, B. O. Boskovic, and J. Robertson, “Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition,” Diamond and Related Materials, vol. 15, no. 4-8, pp. 110-1106, 2006.

R. Kar, S. G. Sarkar, L. Mishra, R. Tripathi, D. C. Kar, R. O. Dusane, D. S. Patil, and N. Maiti, “Synthesis mechanism and ‘orthodoxy’ test based field emission analysis of hybrid and pristine graphene nanowalls deposited on thin Kovar wires,” Diamond and Related Materials, vol. 137, p. 110134, 2023.

D. Banerjee, S. Mukherjee, and K. K. Chattopadhyay, “Synthesis of amorphous carbon nanowalls by DC-PECVD on different substrates and study of its field emission properties,” Applied Surface Science, vol. 257, no. 8, pp. 3717-3722, 2011.

Y. Tzeng, W. L. Chen, C. Wu, J.-Y. Lo, and C.-Y. Li, “The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition,” Carbon New York, vol. 53, pp. 120-129, 2013.

T. Terasawa, and K. Saiki, “Growth of graphene on Cu by plasma enhanced chemical vapor deposition,” Carbon New York, vol. 50, no. 3, pp. 869-874, 2012.

K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond and Related Materials, vol. 14, no. 3-7, pp. 831-834, 2005.

H. G. Jain, H. Karacuban, D. Krix, H.-W. Becker, H. Nienhaus, and V. Buck, “Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor,” Carbon New York, vol. 49, no. 15, pp. 4987-4995, 2011.

J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, “Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition,” Carbon New York, vol. 42, no. 14, pp. 2867-2872, 2004.

W. Takeuchi, H. Sasaki, S. Kato, S. Takashima, M. Hiramatsu, and M. Hori, “Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas,” Journal of Applied Physics, vol. 105, no. 11, p. 113305, 2009.

S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, and M. Hori, “Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition,” Journal of Applied Physisc, vol. 106, no. 9, p. 094302, 2009.

R. Kar, S. P. Tripathy, N. Keskar, and S. Sinha, “Effect of processing gas compositions on growth of carbon nanowalls by ECR-CVD process,” Materials Research Express, vol. 6, no. 6, p. 065029, 2019.

A. Vesel, R. Zaplotnik, G. Primc, and Mozetič, “Synthesis of vertically oriented graphene sheets or carbon nanowalls—review and challenges,” Materials, vol. 12, no. 18, p. 2968, 2019.

S. Lei, T. Kuang, X. Cheng, S. Yin, and H. Zhu, “Deposition of carbon nanofibers on a low carbon steel substrate using an oxy-acetylene reducing flame,” New Carbon Materials, vol. 22, no. 1, pp. 70-73, 2007.

N. K. Memon, F. Xu, G. Sun, S. J. B. Dunham, B. H. Kear, and S. D. Tse, “Flame synthesis of carbon nanotubes and few-layer graphene on metal-oxide spinel powders,” Carbon New York, vol. 63, pp. 478-486, 2013.

H. Oulanti, F. Laurent, T. Le-Huu, B. Durand, and J. B. Donnet, “Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method,” Carbon New York, vol. 95, pp. 261-267, 2015.

L. Guo, and J. Peng, “Growth of graphene sheets under an oxyacetylene flame without a catalyst,” New Carbon Materials, vol. 32, no. 2, pp. 188-192, 2017.

H. Okuno, J.-P. Issi, and J.-C. Charlier, “Catalyst assisted synthesis of carbon nanotubes using the oxy-acetylene combustion flame method,” Carbon New York, vol. 43, no. 4, pp. 864-866, 2005.

B. Zhumadilov, G. Partizan, B. Medyanova, A. Kenzhegulov, G. Suyundykova, and B. Aliyev, “Synthesis of carbon nano-structures on copper films by the method of oxy-acetylene torch,” Materials Today: Proceedings, vol. 31, no. 2, pp. 412-416, 2020.

S. Kumar, and M. Malhotra, “Growth of polycrystalline diamond films on stainless steel without external barrier layers using oxy-acetylene flame,” Diamond and Related Materials., vol. 7, no. 7, pp. 1043-1047, 1998.

J. S. Bunch, S. Verbridge, J. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, P. Mceuen, and P. Mceuen, “Impermeable atomic membranes from graphene sheets,” Nano Letters, vol. 8, no. 8, pp. 2458-2462, 2008.

S. Shimabukuro, Y. Hatakeyama, M. Takeuchi, T. Itoh, and S. Nonomura, “Effect of hydrogen dilution in preparation of carbon nanowall by hot-wire CVD,” Thin Solid Films, vol. 516, no. 5, pp. 710-713, 2008.

K. Tanaka, M. Yoshimura, A. Okamoto, and K. Ueda, “Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 44, no. 4A, pp. 2074-2076, 2005.

Z. Bo, K. Yu, G. Lu, P. Wang, S. Mao, and J. Chen, “Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition,” Carbon New York, vol. 49, no. 6, pp. 1849-1858, 2011.

M. Hiramatsu, K. Shiji, H. Amano, and M. Hori, “Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection,” Applied Physics Letters, vol. 84, no. 23, pp. 4708-4710, 2004.

A. Yoshimura, H. Yoshimura, S. C. Shin, K. Kobayashi, M. Tanimura, and M. Tachibana, “Atomic force microscopy and Raman spectroscopy study of the early stages of carbon nanowall growth by dc plasma-enhanced chemical vapor deposition,” Carbon New York, vol. 50, no. 8, pp. 2698-2702, 2012.

R. Liu, Y. Chi, L. Fang, Z. Tang, and X. Yi, “Synthesis of carbon nanowall by plasma-enhanced chemical vapor deposition method,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 2, pp. 1647-1657, 2014.

S. Ghosh, S. R. Polaki, N. G. Krishna, and M. Kamruddin, “Influence of nitrogen on the growth of vertical graphene nano-sheets under plasma,” Journal of Materials Science, vol. 53, no. 10, pp. 7316-7325, 2018.

S. Y. Kim, W. S. Choi, J.-H. Lee, and B. Hong, “Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD,” Materials Research Bullietin, vol. 58, pp. 112-116, 2014.

S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 97, no. 10, p. 104320, 2005.

F. Tuinstra, and J. L. Koenig, “Characterization of graphite fiber surfaces with Raman Spectroscopy,”Journal of Composite Materials, vol. 4, no. 4, pp. 492-499, 1970.

Downloads

Published

2023-12-13

How to Cite

[1]
B. . ZHUMADILOV, A. KENZHEGULOV, R. NEMKAYEVA, G. . PARTIZAN, Y. YERLANULY, and M. GADBULLIN, “Synthesis of carbon nanowalls by oxy-acetylene torch method”, J Met Mater Miner, vol. 33, no. 4, p. 1806, Dec. 2023.

Issue

Section

Original Research Articles