Microstructural and dielectric characteristics of the Ce-doped Bi\(_{2}\)FeMnO\(_{6}\)


  • Laxmidhar SAHOO Department of Chemistry, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, 751030, India
  • Swayam Aryam BEHERA Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada-757003, Odisha, India
  • Rajesh Kumar SINGH Department of Chemistry, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada-757003, Odisha, India
  • Santosh Kumar PARIDA Department of Physics, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, 751030, India
  • Patnala Ganga Raju ACHARY Department of Chemistry, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, 751030, India




Bi2FeMn0.94Ce0.06O6, Double perovskite, Dielectrics, Loss tangent


A double-perovskite material Bi2FeMn0.94Ce0.06O6 (BFMCO) was synthesized by solid state reaction technique and characterized it by various techniques (structural, microstructural, dielectric, impedance and modulus properties). The material has an orthorhombic crystal structure with an average crystallite size of 52.4 nm, as revealed by X-ray diffraction data (XRD). The scanning electron microscope (SEM) image shows the presence of nano rod-shaped grains and well-defined grain boundaries in this material, with an average grain size of 21.8 µm. The Energy dispersive X-ray (EDX) analysis and color mapping confirm the purity and the composition of the material. The dielectric, impedance and modulus properties are investigated in the temperature range of 25℃ to 500℃ and frequency range of 1 kHz to 1 MHz. The material exhibits a high dielectric constant at low frequency region and a low dielectric loss, which make it a suitable candidate for better energy storage devices. The impedance study reveals the negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus study indicates the non-Debye relaxation of the material. The semi-conducting nature of the material is verified by the semi-circular arcs observed in both Nyquist and Cole-Cole plots. Thermally activated conduction mechanism is confirmed from ac conductivity study.



Download data is not yet available.


V. M. Teresita, A. Manikandan, B. A. Josephine, S. Sujatha, and S. A. Antony, “Electromagnetic properties and humidity-sensing studies of magnetically recoverable LaMgxFe1−xO 3−δ perovskite nano-photocatalysts by sol-gel route,” Journal of Superconductivity and Novel Magnetism, vol. 29, no. 6, pp. 1691-1701, 2016.

B. A. Josephine, A. Manikandan, V. M. Teresita, and S. A. Antony, “Fundamental study of LaMgxCr1−xO3−δ perovskite nanophoto-catalysts: sol-gel synthesis, characterization and humidity sensing,” Korean Journal of Chemical Engineering, vol. 33, no. 5, pp. 1590-1598, 2016.

V. Umapathy, A. Manikandan, S. A. Antony, P. Ramu, and P. Neeraja, “Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol–gel method,”

The Transactions of Nonferrous Metals Society of China , vol. 25, pp. 3271-3278, 2015.

A. Manikandan, S. A. Antony, R. Sridhar, S. Ramakrishna, and M. Bououdina, “Synthesis and characterization of Fe2(MoO4)3 nano-photocatalyst by simple sol-gel method”, Journal of Nanoscience and Nanotechnology, vol. 16, pp. 987-993, 2016.

R. Ramesh, and N. A. Spaldin, “Multiferroics: progress and prospects in thin films” Nature Materials, vol. 6, pp. 21-29, 2007.

T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, “Relaxor ferro-electric BaTiO3–Bi(Mg2/3Nb1/3) O3 ceramics for energy storage application,” Journal of the American Ceramic Society, vol. 98, p. 559, 2015.

T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, and X. Wei, “Micro-structure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage,” Materials Letters, vol. 137, p. 79, 2014.

K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, “Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure,” Nature, vol. 395, pp. 677-680, 1998.

S. Ravi, and C. Senthilkumar, “Multiferroism in new Bi2FeMoO6 material,” Materials Express , vol. 5, 68-72, 2015.

B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen, Y. Chen, Q. Zhang, B. Doyle, X. Xiong, and M. Liu, “A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution,” Nature Communincations, vol. 8, p. 14586, 2017.

Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, and F. Yan, “Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity,” Nature Communincations, vol. 7, p. 11105, 2016.

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, and G. Su, “Highly efficient light management for perovskite solar cells,” Scientific Reports vol. 6, p. 18922, 2016.

S. Ravi, and C. Senthilkumar, “Room temperature ferro-magnetism with high Curie temperature in La2MnNiO6 nano-particle,” Materials Letter, vol. 164, pp. 124-126, 2016.

S. Ravi, and C. Senthilkumar, “Low temperature ferro-magnetism in Bi2MnMoO6 double perovskite material,” Journal of Alloys and Compounds, vol. 699, pp. 463-467, 2017.

Y. Du, Z. X. Cheng, S. X. Dou, X. L. Wang, H. Y. Zhao, and H. Kimura, “Magnetic properties of Bi2FeMnO6: a multiferroic material with double-perovskite structure,” Applied Physics Letters, vol. 97, p. 122502, 2010.

L. Sun, Y.-W. Fang, J. He, Y. Zhang, R. Qi, Q. He, R. Huang, P. Xiang, X.-D. Tang, P. Yang, J. Chu, Y.-H. Chu, and C.-G. Duan, “The preparation, and structural and multiferroic properties of B-site ordered double-perovskite Bi2FeMnO6,” Journal of Materials Chemistry C, vol. 5, pp. 5494-5500, 2017.

Y. Du, Z. X. Cheng, S. X. Dou, X. L. Wang, H. Y. Zhao, and H. Kimura, “Magnetic properties of Bi2FeMnO6: a multiferroic material with double-perovskite structure,” Applied Physics Letters, vol. 97, p. 122502, 2010.

H. Zhao, H. Kimura, Z. Cheng, X. Wang, K. Ozawa, and T. Nishida, “Magnetic characterization of Bi2FeMnO6 film grown on (100) SrTiO3 substrate,” Physica status solidi (b), vol. 4, pp. 314-315, 2010.

X. Ou, Z. Li, F. Fan, H. Wang, and H. Wu, “Long-range magnetic interaction and frustration in double perovskites

Sr2NiIrO6 and Sr2ZnIrO6,” Scientific Reports, vol, 4, p. 7542, 2014.

J. L Rosas, J. M Cervantes, J. Léon-Flores, E. Carvajal, J. A. Arenas, M. Romero, and R. Esca,illa, “DFT study on the electronic and magnetic properties of the Sr2FeNbO6 compound,” Materials Today Communications, vol. 23, p. 100844, 2020.

Y. Zhao, T. Liu, Q. Shi, Q. Yang, C. Li, D. Zhang, and C. Zhang, “Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries,” Green Energy & Environment, vol. 3, no. 1, 78-85, 2018.

R. K. Parida, D. K. Pattanayak, B. Mohanty, B. N. Parida, and N. C. Nayak, “Dielectric and ferroelectric investigations of barium doped double perovskite Pb2BiVO6 for electronic and optical devices,” Materials Chemistry and Physics, vol. 231, pp. 372-381, 2019.

Y. Uratani, T. Shishidou, F. Ishii, and T. Oguch, “First-principles exploration of ferromagnetic and ferroelectric double-perovskite transition-metal oxides,” Physica B: Condensed Matter, vol. 383, pp. 9-12, 2006.

H-EM Musa Saad, and N. Rammeh, “Crystal, magnetic and electronic structures of 3d–5d ordered double perovskite Ba2CoReO6,” Solid State Communication. vol. 248, pp. 129-133, 2016.

S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, and K. M. Jadhav, “Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4,” Journal of Applied Physics, vol. 110 p. 013914-1-8, 2011.

M. Sahu, V. Vivekananthan, S. Hajra, D. K. Khatua, and S.-J. Kim, “Porosity modulated piezo-triboelectric hybridized nanogenerator for sensing small energy impacts,” Applied Materials Today, vol. 22, p. 100900, 2021.

N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, and R. N. P. Choudhary, “Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 1919-1926, 2019.

D. Bonardo, N. Darsono, S. Humaidi, A. Imaduddin and N. S. Silalah, “Effect of calcination frequency on the thermoelectric properties of Ti doped CuCrO2 by solid state method,” Journal of Metals, Materials and Minerals, vol. 33, 1785, 2023.

S. Panda, S. Hajra, K. Mistewicz, P. In-na, M. Sahu, P. M. Rajaitha, and H. J. Kim, “Piezoelectric energy harvesting systems for biomedical applications,” Nano Energy, vol. 100 p. 107514, 2022.

V. M. Goldschmidt, “Die Gesetze Der Krystallochemie,” Naturwissenschaften, vol. 14, pp. 477-485, 1926.

R. D. Shannon and C. T. Prewitt, “effective ionic radii in oxides and fluorides,” Acta Crystallographica Section B, vol. 25, pp. 925-946, 1969.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, p. 1976.

A. Corriero, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, and A. Falcicchio, “EXPO2013: A kit of tools for phasing crystal structures from powder data,” Journal of Applied Crystallography, vol. 46, pp, 1231-1235, 2013.

E. Wu, “POWDMULT: An interactive powder diffraction data interpretation and indexing program, ver. 2.1, School of Physical Science, Flinders University, Australia, 1989.

R. A. Young (Ed.), The Rietveld Method, Oxford University Press, Oxford, 1995.

M. Ajmal, and A. Maqsood, “Influence of zinc substitution on structural and electrical properties of Ni1-xZnxFe2O4 ferrites,” Meterials Science and Engineering: B, vol. 139, pp. 164-170, 2007.

D. Panda, S. S. Hota, and R. N. P. Choudhary, “Development of a novel triple perovskite barium bismuth molybdate material for thermistor-based applications,” Meterials Science and Engineering: B, vol. 296, p. 116616, 2023.

S. S.Ashima, R. A. Agarwal, and M. N. Ahlawat, “Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrite,” Journal of Applied Physics, vol. 112 pp. 14110-14115, 2012.

C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies,” Physical Review Journal, vol. 83, pp.121-124, 1951.

S. K. Parida, and R. N. P. Choudhary, “Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite,” Phase Transition, vol. 93, pp. 981-991, 2020.

K. Pradhan, D. S. Kumari, V. S. Puli, P. T. Das, D. K. Pradhan, A. K., J. F. Scott, and R. S. Katiyar, “Correlation of dielectric, electrical and magnetic properties near the magnetic phase transition temperature of cobalt zinc ferrite,” Physical Chemistry Chemical Physics, vol. 19, pp. 210-216, 1017.

S. Mishra, R. N. P. Choudhary and S. K. Parida, “Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices,” Ceramics International, vol. 48, no. 12, pp. 17020-17033, 2022.

P. Gogoi, P. Srinivas, P. Sharma, and D. Pamu, “Optical, dielectric characterization and impedance spectroscopy of Ni-substituted MgTiO3 thin films,” Journal of Electronic Materials, vol. 45 pp. 899-909, 2016.

D .L. Rocco, A. A. Coelho, S. Gama, and M. de C. Santos, “Dependence of the magnetocaloric effect on the A-site ionic radius in isoelectronic manganites,” Journal of Applied Physics, vol. 113, p. 113907, 2013.

I. Coondoo, N. Panwar, A. Tomar, A. K. Jha, and S. K. Agarwal, “Impedance spectroscopy and conductivity studies in SrBi2 (Ta1-xWx)2O9 ferroelectric ceramics,” Physica B: Condensed Matter, vol. 407, pp. 4712-4720, 2012.

F. S. Moghadasi, V. Daadmehr, and M. Kashf, “Characterization and the frequency thermal response of electrical properties of Cu nano ferrite prepared by sol-gel method,” Journal of Magnetism and Magnetic Materials, vol. 416, pp. 103-109, 2016.

H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, and L. Beji, “Physical and electrical characteristics of metal/ Dy2O3/ p-GaAs structure,” Physica B: Condensed Matter, vol. 444, pp. 58-64, 2014.

S. Thakur, R. Rai, I. Bdikin, and M. A. Valente, “Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics,” Journal of Materials Research, vol. 19, pp. 1-8, 2016.

S. A. Jawad, A. S. Abu-Surrah, M. Maghrabi, and Z. Khattari, “Electric impedance study of elastic alternating propylene–carbon monoxide copolymer (PCO-200),” Physica B: Condensed Matter, vol. 406, pp. 2565-2569, 2011.

P. G. R. Achary, R. N. P. Choudhary, and S. K. Parida, “Structure, electric and dielectric properties of PbFe1/3Ti1/3W1/3O3 single perovskite compound, process,” Applied Ceramics, vol.14 pp. 146-153, 2020.

M. Pollak, and T. H. Geballe, “Low-frequency conductivity due to hopping processes in silicon,” Physical Review, vol. 122, pp. 1742-1753, 1961.

J. R. Macdonald, “Comparison of the universal dynamic response power-law fitting model for conducting systems with superior alternative models,” Solid State Ionics, vol. 133 pp. 79-97, 2000.

F. A. Abdel-Wahab, H. M. Maksoud, and M. F. Kolkata, “Electrical conduction and dielectric relaxation in semiconductor SeSm0.005,” Journal of Physics D: Applied Physics, vol. 39 pp. 190-195, 2006.

A. Ghosh, S. Bhattacharya, D. P. Bhattacharya, and A. Ghosh, “Frequency-dependent conductivity of cadmium vanadate glassy semiconductor,” Journal of Physics: Condensed Matter, vol. 20, pp. 35203-35205, 2008.

S. Halder, S. Bhuyan, S. N. Das, S. Sahoo, R. N. P. Choudhary, and P. Das, “Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi (Zn 2/3 Ta 1/ 3) O 3 electronic material,” Applied Physics A, vol. 123, pp. 1-8, 2017.




How to Cite

L. . SAHOO, S. A. . BEHERA, R. K. . SINGH, S. K. . PARIDA, and P. G. R. . ACHARY, “Microstructural and dielectric characteristics of the Ce-doped Bi\(_{2}\)FeMnO\(_{6}\) ”, J Met Mater Miner, vol. 34, no. 1, p. 1926, Mar. 2024.



Original Research Articles