Effects of yttria concentration and microstructure on electric breakdown of yttria stabilized zirconia

Authors

  • Oratai Jongprateep National Agricultural Machinery Center, Kasetsart University, Kamphaengsaen Campus
  • Vladimir Petrovsky Department of Materials Science and Engineering, Missouri University of Science and Technology
  • Fatih Dogan Department of Materials Science and Engineering, Missouri University of Science and Technology

Keywords:

Yttria stabilized zirconia, capaitors, dielectric properties, breakdown strength, microstructure

Abstract

Ceramic materials have great potentials for capacitor application. However, low breakdown strength of the materials remains a key challenge for development of high performance capacitors. In this study, yttria stabilized zirconia (YSZ) were fabricated and tested for breakdown strength. YSZ samples with 3, 8, and 10 mol% yttria were carefully processed to control grain size and porosity level. Experimental results revealed that breakdown strength as high as 2 MV/cm could be achieved. The breakdown strength was not significantly affected by porosity level, but it was by yttria concentration. Relationship among yttria concentration, residual porosity and breakdown strength is discussed in this study.

Downloads

Download data is not yet available.

References

Ujma, Z., Szymczak, L., Handerek, J., Szot, K. and Penkalla, H. J. 2000. Dielectric and pyroelectric properties of Nb-doped Pb (Zr0.92Ti0.08)O3 ceramics. J. Am. Ceram. Soc. 20 : 1003-1010.

Liebault, J., Vallayer, J., Goeuriot, D., Treheux, D. and Thevenot, F. 2001. How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics. J. Euro. Ceram. Soc. 21 : 389-397.

Kishimoto, A. and Tanaka, T. 2000. High voltage screening of unidirectionally surface ground titania ceramics. J. Am. Ceram. Soc. 83 : 1413-1416.

Essary,C. 2000. Processing and characterization of ceramic tape layer for ultra high gradient insulator. Master thesis, University of Missouri-Rolla

Gerson, R. and Marshall, T. 1959. Dielectric breakdown of porous ceramics. J. Appl. Phys. 30 : 1650-1653.

Huebner, W. and Zhang, S. C. 2001. High energy density dielectrics for symmetric Blumleins. In : Proceedings of IEEE International Symposium in Applied Ferroelectrics. 12 : 8363-8366.

Huebner, W., Zhang, S. C. and Gilmore, B. 1999. High breakdown strength multilayer ceramics for compact pulsed power applications. In : Proceedings of the 12th International Pulsed Power Conference. 2 : 1242-1245.

Economos, G. 1950. The Effect of microstructure on the electrical and magnetic properties of ceramics. In : Ceramic Fabrication Processes. Kingery, W.D.(ed.) New York : John Wiley & Sons : 201.

Ye, Y. 2003. Grain size dependence of the dielectric breakdown strength of titanium dioxide dielectric. University of MissouriRolla.

Ye, Y., Zhang, S. Z., Dogan, F., Schamiloglu, E., Gaudet, J., Castro, P., Roybal, M., Joler, M. and Christodulou, C. 2003. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In : 14th IEEE International Pulsed Power Conference, (IEEE, Dallas, Texas, 2003) : 719.

Tunkasiri, T. and Rujijanagul, G. 1996. Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15 : 1767-1769.

Nagaya, T. and Isibashi, Y. 1997. Dielectric breakdown in polycrystalline system. Jpn. J. Appl. Phys.Part I, 36 : 6136-6140.

Fujita, S., Ruike, M. and Baba, M. 1996. Treeing breakdown voltage and TSC of alumina filled epoxy resin. In : Conference on Electrical Insulation and Dielectric Phenomena, (IEEE, San Francisco, 1996) : 738.

Khalil, M.S., Henk, P.O. and Henriksen, M.1990. The influence of titanium dioxide additive on the short-term DC breakdown strength of polyethylene. In : Conference Record of the 1990 IEEE International Symposium on Electrical Insulation, (IEEE, Toronto, Canada, 1990) : 268.

Ma, D. J., Siegel, R. W., Hong, J. I. and Schadler, L. S. 2004. Influence of nanoparticle surfaces on the electrical breakdown strength of nanoparticle-filled low-density polyethylene. J. Mater. Res., 19 : 857-863.

Bigarre, J., Fayeulle, S. and Treheux, D. 1995. Application of the mirror method to the study of chromium dopped and zirconium ion implanted sapphire. In : Conference on Electrical. Insulator and Dielectric Phenomena. (IEEE, Virginia beach, Virginia, 1995) : 676.

Moya-Gontier, E. G., Moya, F., Ahmed, A. S., Bigarre, J., Juve, D. and Jardin, C. 1996. Standard characterization techniques. In : Conference on Electrical. Insulator and Dielectric Phenomena. (IEEE, San Francisco, California, 1996) : 98.

Damamme, G., Le Gressus, C. and De Reggi, A. S. 1997. Space charge characterization for the 21st century. IEEE Transactions on Dielectrics and Electrical Insulation. 4 : 165-174.

Touzin, M., Goeuriot, D., Guerret-Piercourt, H., Juve, D. and Treheux, D. 2007. Relationship between dielectric breakdown resistance and charge transport in alumina materialsEffects of the microstructure. J. Eur. Ceram. Soc., 27 : 1193-1197.

Lee, J.S., Anselmi-Tamburini, U., Munir, Z.A. and Kim, S. 2006. Direct evidence of electron accumulation of yttria-doped nanocrystalline zirconia ceramics. Electrochem. Solid-State Lett. 9 : J34-J36.

Downloads

Published

2017-04-23

How to Cite

[1]
O. . Jongprateep, V. Petrovsky, and F. Dogan, “Effects of yttria concentration and microstructure on electric breakdown of yttria stabilized zirconia”, J Met Mater Miner, vol. 18, no. 1, Apr. 2017.

Issue

Section

Original Research Articles

Most read articles by the same author(s)