Simple and rapid preparation of CuO film using SILAR process for application as hole-transporting layer in p-i-n perovskite solar cell

Authors

  • Sutthipoj Wongrerkdee Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus
  • Kritsada Hongsith Faculty of Science, Chiang Mai University and Thailand Center of Excellence in Physics (ThEP center)
  • Supab Choopun Faculty of Science, Chiang Mai University, Thailand Center of Excellence in Physics (ThEP center) and Faculty of Science, Chiang Mai University
  • Khathawut Lohawet National Nanotechnology Center, National Science and Technology Development Agency
  • Pisist Kumno National Nanotechnology Center, National Science and Technology Development Agency

Keywords:

Copper oxide, SILAR process, Hole-transporting layer, Perovskite solar cell

Abstract

Copper oxide (CuO) films are considered to be an alternative metal oxide semiconductor for hole-transporting layer application in p-i-n perovskite solar cells due to their unique properties including intrinsic p-type materials and energy band level matching. The films can be synthesized using several methods such as sputtering, solution process and spin-coating processes. However, using the successive ionic layer adsorption and reaction (SILAR) process to prepare a CuO hole-transporting layer in p-i-n perovskite solar cells is still underreported. Thus, this study prepared the SILAR processed CuO films and applied as a hole-transporting layer in p-i-n perovskite solar cells. The results showed that morphology of CuO films is slightly changed when the SILAR cycles is increased, in correlation to the increasing of detected copper element. High optical transmittance in visible light region is found for all conditions, indicating a good transparent film for optoelectronic device likely to solar cells. For solar cell application, a commercial PEDOT:PSS hole-transporting layer was used in a p-i-n perovskite solar cell and compared with the CuO films. The solar cells fabricated with CuO films produced lower performance than that fabricated with commercial PEDOT:PSS. The low performance resulted from the incomplete formation of perovskite films when they are deposited onto CuO films, causing carrier loss due to the recombination effect. However, power conversion efficiency was observed where the solar cell was fabricated with CuO films, which could be attributed to the potential of CuO films as an alternative hole-transporting layer in p-i-n perovskite solar cells. The study indicated that the SILAR method could be an alternative offering a simple, fast, and low cost process for p-i-n perovskite solar cell application.

Metrics

Metrics Loading ...

References

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.

N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide,” Journal of the American Chemical Society, vol. 137, pp. 8696-8699, 2015.

K. Hwang, Y.-S. Jung, Y.-J. Heo, H. F. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D.-Y. Kim, and D. Vak, “Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells,” Advanced Materials, vol. 27, pp. 1241-1247, 2015.

N.-G. Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials Today, vol. 18, 65-72, 2015.

M.-E. Ragoussi and T. Torres, “New generation solar cells: concepts, trends and perspectives,” Chemical Communications, vol. 51, pp. 3957-3972, 2015.

S. Razza, F. Di Giacomo, F. Matteocci, L. Cina, A. L. Palma, S. Casaluci, P. Cameron, A. D'Epifanio, S. Licoccia, A. Reale, T. M. Brown, and A. Di Carlo, “Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process,” Journal of Power Sources, vol. 277, pp. 286-291, 2015.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K., Chandiran, B. Liu, M. K. Nazeeruddin, and M. Gratzel, “Mesoscopic CH3NH3PbI3/ TiO2 Heterojunction Solar Cells,” Journal of the American Chemical Society, vol. 134, pp. 17396-17399, 2012.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, and N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, pp. 591, 2012.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, pp. 395-398, 2013.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature Photonics, vol. 8, pp. 133-138, 2014.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskitesensitized solar cells,” Nature, vol. 499, pp. 316-319, 2013.

S. Luo and W. A. Daoud, “Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design,” Journal of Materials Chemistry A, vol. 3, pp. 8992-9010, 2015.

J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,” Energy and Environmental Science, vol. 8, pp. 1602-1608, 2015.

Z. Zhou, S. Pang, Z. Liu, H. Xu, and G.Cui, “Interface engineering for high-performance perovskite hybrid solar cells,” Journal of Materials Chemistry A, vol. 3, pp. 19205- 19217, 2015.

C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, and W.-F. Su, “Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell,” ACS Applied Materials and Interfaces, vol. 7, pp. 4955- 4961, 2015.

S. Bag and M. F. Durstock, “Large Perovskite Grain Growth in LowTemperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition,” ACS Applied Materials and Interfaces, vol. 8, pp. 5053-5057, 2016.

R. Betancur, D. Ramirez, J. F. Montoya, and F. Jaramillo, “A calorimetric approach to reach high performance perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 146, pp. 44-50, 2016.

T. Du, N. Wang, H. Chen, H. Lin, and H. He, “Comparative Study of Vapor- and SolutionCrystallized Perovskite for Planar Heterojunction Solar Cells,” ACS Applied Materials and Interfaces, vol. 7, pp. 3382- 3388, 2015.

Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, and I. D. Sharp, “Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled LowPressure Vapor Annealing,” The Journal of Physical Chemistry Letters, vol. 6, pp. 493- 499, 2015.

H. Tsai, W. Nie, P. Cheruku, N. H. Mack, P. Xu, G. Gupta, A. D. Mohite, and H.-L.Wang, “Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control,” Chemistry of Materials, vol. 27, pp. 5570-5576, 2015.

A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, and S. K. Sarkar, “Inorganic hole conducting layers for perovskite-based solar cells,” Journal of Physical Chemistry Letters, vol. 5, pp. 1748- 1753, 2014.

M. Habibi, F. Zabihi, M. R. AhmadianYazdi, and M. Eslamian, “Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1012-1031, 2016.

H. Rao, S. Ye, W. Sun, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, Y. Li, and C.Huang, “A 19.0% efficiency achieved in CuOxbased inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method,” Nano Energy, vol. 27, pp. 51-57, 2016.

Z.-K. Yu, W.-F. Fu, W.-Q. Liu, Z.-Q. Zhang, Y.-J. Liu, J.-L. Yan, T. Ye, W.-T. Yang, H.- Y. Li, and H.-Z. Chen, “Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells,” Chinese Chemical Letters, vol. 28, pp. 13-18, 2017.

C. Zuo, and L. Ding, “Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells,” Small, vol. 11, pp. 5528-5532, 2015.

Y. Guo, H. Lei, L. Xiong, B. Li, Z. Chen, J. Wen, G. Yang, G. Li, and G. Fang, “Single phase, high hole mobility Cu2O films as an efficient and robust hole transporting layer for organic solar cells,” Journal of Materials Chemistry A, vol. 5, pp. 11055-11062, 2017.

Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown and R. Jose, “Advances in hole transport materials engineering for stable and efficient perovskite solar cells,” Nano Energy, vol. 34, pp. 271-305, 2017.

L. Liu, Q. Xi, G. Gao, W. Yang, H. Zhou, Y. Zhao, C. Wu, L. Wang, and J. Xu, “Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions,” Solar Energy Materials and Solar Cells, vol. 157, pp. 937-942, 2016.

L. Wang, R. Zhang, T. Zhou, Z. Lou, J. Deng, and T. Zhang, “P-type octahedral Cu2O particles with exposed {111} facets and superior CO sensing properties,” Sensors and Actuators B: Chemical, vol. 239, pp. 211- 217, 2017.

S. Chatterjee, S. K. Saha, and A. J. Pal, “Formation of all-oxide solar cells in atmospheric condition based on Cu2O thinfilms grown through SILAR technique,” Solar Energy Materials and Solar Cells, vol. 147, pp. 17-26, 2016.

S. Chatterjee, and A. J. Pal, “Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures,” The Journal of Physical Chemistry C, vol. 120, pp. 1428-1437, 2016.

W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. Wang, M. N. Hedhili, Y. Li, K. Wu, X. Wang, O. F. Mohammed, and T. Wu, “Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells,” Nanoscale, vol. 8, pp. 6173- 6179, 2016.

A. S. Patil, G. M. Lohar, and V. J. Fulari, “Structural, morphological, optical and photoelectrochemical cell properties of copper oxide using modified SILAR method,” Journal of Materials Science: Materials in Electronics, vol. 27, pp. 9550- 9557, 2016.

S. Sutthana, K. Hongsith, P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, D. Boonyawan, P. Kumnorkaew, A. Tuantranont, and S. Choopun, “Interface modification of CH3NH3PbI3/PCBM by pre-heat treatment for efficiency enhancement of perovskite solar cells,” Current Applied Physics, vol. 17, pp. 488-494, 2017.

A. Banerjee, D. Prusty, M. Dutta, A. K. Bhowmick and T. Laha, “Effect of Cu2O thin film on Cu–Sn alloy coated steel surface in promoting interfacial adhesion with rubber,” Journal of Adhesion Science and Technology, vol. 31, pp. 1163-1180, 2017.

L.-C. Chen, C.-C. Chen, K.-C. Liang, S. H. Chang, Z.-L. Tseng, S.-C. Yeh, C.-T. Chen, W.-T. Wu, and C.-G. Wu, “Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells,” Nanoscale Research Letters, vol. 11, pp. 402, 2016.

A. S. Patil, M. D. Patil, G. M. Lohar, S. T. Jadhav, and V. J. Fulari, “Supercapacitive properties of CuO thin films using modified SILAR method,” Ionics, vol. 23, pp. 1259- 1266, 2017.

S. Visalakshi, R. Kannan, S. Valanarasu, A. Kathalingam, and S. Rajashabala, “Studies on optical and electrical properties of SILAR-deposited CuO thin films,” Materials Research Innovations, vol. 21, pp. 146-151, 2017.

G. Adam, M. Kaltenbrunner, E. D. Głowacki, D. H. Apaydin, M. S. White, H. Heilbrunner, S. Tombe, P. Stadler, B. Ernecker, C. W. Klampfl, N. S. Sariciftci, and M. C. Scharber, “Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer,” Solar Energy Materials and Solar Cells, vol. 157, pp. 318-325, 2016.

W. Qiu, T. Merckx, M. Jaysankar, C. Masse de la Huerta, L. Rakocevic, W. Zhang, U. W. Paetzold, R. Gehlhaar, L. Froyen, J. Poortmans, D. Cheyns, H. J. Snaith, and P. Heremans, “Pinhole-free perovskite films for efficient solar modules,” Energy and Environmental Science, vol. 9, 484-489, 2016.

C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,” Nature Communications, vol. 6, pp. 1-7 2015.

Downloads

Published

2018-06-27

How to Cite

[1]
S. Wongrerkdee, K. Hongsith, S. Choopun, K. Lohawet, and P. . Kumno, “Simple and rapid preparation of CuO film using SILAR process for application as hole-transporting layer in p-i-n perovskite solar cell”, J Met Mater Miner, vol. 28, no. 1, Jun. 2018.

Issue

Section

Original Research Articles