Titanium dioxide nanostructures synthesized by sonochemical – hydrothermal process


  • Narongdet Wongpisutpaisan College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang
  • Chokchai Kahattha College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang and ThEP Center, CHE
  • Naratip Vittayakorn College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang and Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
  • Anucha Ruangphanit Thai Microelectronics Center, Wangtakien District
  • Wisanu Pecharapa College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang and ThEP Center, CHE


Titanium dioxide particles, Sonochemical, Hydrothermal


Titanium dioxide particles were prepared by sonochemical–hydrothermal process from a precursor of titanium isopropoxide in the presence of polyvinyl alcohol aqueous solution. Sonication of the precursor was conducted using sonic horn operated at 20 kHz until the completely precipitated product was reached. As-obtained intermediate products were then loaded into a Teflon-lined stainless steel autoclave for hydrothermal process with10M NaOH aqueous solution and heated under different temperature 80-120ºC. The synthesized products were characterized of structural properties and surface morphology by X-ray diffraction spectroscopy and field emission scanning electron microscope. The results show that prepared samples have a good crystallinity and the high purity TiO2. In addition, it is acknowledged that the hydrothermal temperature has a significant influence on their physical properties.


Download data is not yet available.


Isley, S.L., Jordan, D.S. and Penn, R.L. (2009). Titanium dioxide nanoparticles : Impact of increasing ionic strength during synthesis, reflux, and hydrothermal aging. Mater. Res. Bull. 44 : 119-125.

Hussain, M., Ceccarelli, R., Marchisio,D.L., Fino, D., Russo, N. and Geobaldo, F. (2010). Synthesis, characterization and photocatalytic application of novel TiO2 Nanoparticles.Chem. Eng. J. 157: 45-51.

Boehm, M., Voelklein, F. and Ensinger, W. (2011). Low cost chemical sensor device for supersensitive pentaerythritoltetra - nitrate (PETN) explosives detection based on titanium dioxide nanotubes. Sensor. Actuat. B. 158 : 286-291.

Zeng, T.W., Lo, H.H., Chang, C.H., Lin, Y.Y., Chen, C.W. and Su, W.F. (2009).Hybrid poly (3-hexylthiophene)/titanium dioxide nanorods material for solar cell applications. Sol. Energ. Mat. Sol. C. 93 : 952-957.

Law, W.S., Lam, S.W., Gan, W.Y., Scott, J. and Amal, R. (2009). Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films. Thin Solid Films. 517 : 5425-5430.

Jiang, X., Tian, X., Gu, J., Huang, D. and Yang, Y. (2011). Cotton fabric coated with nano TiO2-acrylate copolymer for photocatalytic self-cleaning by insitu suspension polymerization. Appl. Surf. Sci. 257 : 8451-8456.

Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R. and Louis,C. (2004). Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. 222 : 357-367.

Prasad, K., Pinjari, D.V., Pandit, A.B. and Mhaske, S.T. (2010). Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–gel technique. Ultrason. Sonochem. 17 : 409-415.

Wang, C., Tong, Y., Sun, Z., Xin, Y., Yan, E. and Huang, Z. (2007). Preparation of onedimensional TiO2 nanoparticles within polymer fiber matrices by electrospinning. Mater.Lett. 61 : 5125-5128.

Byrappa, K. and Adschiri, T. (2007). Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53 : 117-166.

Guo, S., Wu, Z., Wang, H. and Dong, F.(2009). Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances. Catal. Commun. 10 : 1766-1770.

Nguyen Phan, T.D., Pham, H.D., Cuong, T.V., Kim, E.J., Kim, S.W. and Shin, E.W. (2009). A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid. J. Cryst. Growth. 312: 79-85.

Guo, W., Lin, Z., Wang, X. and Song, G. (2003). Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron. Eng. 66 : 95-101.

Viana, M.M., Soares, V.F. and Mohallem, N.D.S. (2010). Synthesis and characterization of TiO2 nanoparticles. Ceram. Int. 36 : 2047-2053.

Ranjbar-Karimi, R., Bazmandegan-Shamil, A., Aslani, A. and Kaviani, K. (2010). Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticales. Physica B. 405 : 3096-3100.

González- Reyes, L., Hernandez-Perez, I., DiazBarrigaArceo, L., Dorantes-Rosales, H., Arce-Estrada, E., Suarez-Parra, R. and CruzRivera, J.J. (2010). Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis. Mat. Sci. Eng. B. 175 : 9-13.

Su, C., Tseng, C.M., Chen, L.F., You, B.H., Hsu, B.C. and Chen, S.S. (2006). Sol– hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films. 498 : 259-265.

Yoshida, Y., Suzuki, Y. and Yoshikawa, S. (2005). Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid. State. Chem. 178 : 2179-2185.

Yu, H., Yu, J., Cheng, B. and Zhou, M. (2006). Effects of hydrothermal post-treatmen on microstructures and morphology of titanate nanoribbons. J. Solid. State. Chem. 179 : 349-354.

Choi, H.C., Jung, Y.M. and Kim, S.B. (2005). Size effects in the Raman Spectra of TiO2 nanoparticles. Vib. Spectrosc. 37 : 33-38.

Šćepanović,M. J., Grujić-Brojčin, M., Dohčević- Mitrović Z.D. and Popović, Z.V. (2009). Characterization of anatase TiO2 Nanopowder by variable temperature Raman Spectroscopy. Sci. Sinter. 41 : 67-73.




How to Cite

N. . Wongpisutpaisan, C. . Kahattha, N. Vittayakorn, A. Ruangphanit, and W. . Pecharapa, “Titanium dioxide nanostructures synthesized by sonochemical – hydrothermal process”, J Met Mater Miner, vol. 23, no. 1, Jun. 2013.



Original Research Articles

Most read articles by the same author(s)