Enhancing acetone gas sensor performance with cobalt oxide doping in LaFeO\(_{3}\) prepared by co-precipitation

Authors

  • Andhy SETIAWAN Physics Study Program, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Isola, Sukasari, Bandung, West Java, 40154, Indonesia
  • Farah Aprisza SHEELMAREVAA Physics Study Program, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Isola, Sukasari, Bandung, West Java, 40154, Indonesia
  • Muhamad Taufik ULHAKIM Department of Mechanical Engineering, Faculty of Engineering, Universitas Buana Perjuangan Karawang, Jl. HS Ronggo Waluyo, Puseurjaya, Telukjambe Timur, Karawang, West Java, 41361, Indonesia
  • Dani Gustaman SYARIF National Research and Innovation Agency (BRIN), Jl. Tamansari No. 71 Lebak Siliwangi, Coblong, Bandung, West Java, 40132, Indonesia
  • Endi SUHENDI Physics Study Program, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Isola, Sukasari, Bandung, West Java, 40154, Indonesia

DOI:

https://doi.org/10.55713/jmmm.v35i1.1919

Keywords:

Dopant effect, acetone gas sensor, cobalt oxide, LaFeO3, co-precipitation

Abstract

Semiconductor-based gas sensors frequently encounter difficulties in attaining optimal performance due to challenges such as temporal stability and low sensitivity, stemming from their insulating properties at room temperature. To address these limitations, this study proposes a novel approach by preparing cobalt-doped LaFeO3 (LaFeO3-Co) using the co-precipitation method, with doping concentrations of 2.5 mol% and 5.0 mol%. The acetone gas sensors were fabricated into thick films via the screen-printing technique, and their performance was thoroughly characterized. X-ray diffraction (XRD) analysis confirmed a cubic crystal structure, and the addition of 2.5 mol% cobalt was found to reduce the particle size of LaFeO3, enhancing its gas-sensing performance. Conversely, the addition of 5.0 mol% of cobalt led to an increase in particle size, which might have hindered sensor performance. Electrical characterization revealed that the LaFeO3-Co sensor with 2.5 mol% doping achieved the highest response of 13.30 at 330°C and 270 ppm of acetone gas. This study underscores the promise of Co-doped LaFeO3 in enhancing gas-sensing capabilities, marking a substantial advancement in the development of high-performance acetone gas sensors. However, further optimization and investigation are necessary to fully realize its potential for commercialization.

Downloads

Download data is not yet available.

References

Q. Wang, X. Cheng, Y. Wang, Y. Yang, Q. Su, J. Li, B. An, Y. Luo, Z. Wu, and E. Xie, “Sea urchins-like WO3 as a material for resistive acetone gas sensors,” Sensors and Actuators B: Chemical, vol. 355, p. 131262, 2022. DOI: https://doi.org/10.1016/j.snb.2021.131262

C. Li, P. G. Choi, K. Kim, and Y. Masuda, “High performance acetone gas sensor based on ultrathin porous NiO nanosheet,” Sensors and Actuators: B. Chemical, vol. 367, p. 132143, 2022. DOI: https://doi.org/10.1016/j.snb.2022.132143

L. Guo, Z. Shen, C. Ma, C. Ma, J. Wang, and T. Yuan, “Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection,” Journal of Alloys and Compounds, vol. 906, p. 164375, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164375

G. Feng, Y. Che, S. Wang, S. Wang, J. Hu, J. Xiao, C. Song, and L. Jiang, “Sensitivity enhancement of In2O3/ZrO2 composite based acetone gas sensor: A promising collaborative approach of ZrO2 as the heterojunction and dopant for in-situ grown octahedron-like particles,” Sensors and Actuators: B. Chemical, vol. 367, p. 132087, 2022. DOI: https://doi.org/10.1016/j.snb.2022.132087

C. Zhang, G. Liu, X. Geng, K. Wu, and M. Debliquy, “Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review,” Sensors and Actuators A: Physical, vol. 309, p. 112026, 2020. DOI: https://doi.org/10.1016/j.sna.2020.112026

T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, H. Kong, G. Yang, and G. Wei, “The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: A review,” Nanomaterials, vol. 12, p. 982, 2022. DOI: https://doi.org/10.3390/nano12060982

E. Wongrat, N. Chanlek, C. Cheaiarrom, W. Thupthimchun, B. Samransuksamer, and S. Choopun, “Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb,” Ceramics International, vol. 43, pp. S557-S566, 2017. DOI: https://doi.org/10.1016/j.ceramint.2017.05.296

X. Lian, Y. Li, X. Tong, Y. Zou, X. Liu, D. An, and Q. Wang, “Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties,” Applied Surface Science, vol. 407, pp. 447-455, 2017. DOI: https://doi.org/10.1016/j.apsusc.2017.02.228

S. Liang, J. Li, F. Wang, J. Qin, X. Lai, and X. Jiang, “Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nano-particles,” Sensors and Actuators B: Chemical, vol. 238, pp. 923-927, 2017. DOI: https://doi.org/10.1016/j.snb.2016.06.144

J. Zhang, H. Lu, C. Yan, Z. Yang, G. Zhu, J. Gao, F. Yin, and C. Wang, “Fabrication of conductive graphene oxide WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties,” Sensors and Actuators B: Chemical, vol. 264, pp. 128-138, 2018. DOI: https://doi.org/10.1016/j.snb.2018.02.026

H. Zhang, H. Qin, C. Gao, G. Zhou, Y. Chen, and J. Hu, “UV light illumination can improve the sensing properties of LaFeO3 to acetone vapor,” Sensors, vol. 18, p. 1990, 2018. DOI: https://doi.org/10.3390/s18071990

I. Jaouali, H. Hamrouni, N. Moussa, M. F. Nsib, M. A. Centeno, A. Bonavita, G. Neri, and S. G. Leonardi, “LaFeO3 ceramics as selective oxygen sensors at mild temperature,” Ceramics International, vol. 44, pp. 4183-4189, 2018. DOI: https://doi.org/10.1016/j.ceramint.2017.11.221

N. Sivakumar, J. Gajendiran, A. Alsalme, and K. Tashiro, “Structural, morphological, optical, magnetic and electrochemical behaviour of solid state synthesized pure and Sr-doped LaFeO3 nanoparticles,” Physica B: Condensed Matter, vol. 641, pp. 414086, 2022. DOI: https://doi.org/10.1016/j.physb.2022.414086

M. R. Islam, M. Rahman, S. F. U. Farhad, and J. Podder, “Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films,” Surfaces and Interfaces, vol. 16, pp. 120-126, 2019. DOI: https://doi.org/10.1016/j.surfin.2019.05.007

Y. Chen, J. Wu, Z. Xu, W. Shen, Y. Wu, and J. Corriou, “Computational assisted tuning of Co-doped TiO2 nanoparticles for ammonia detection at room temperatures,” Applied Surface Science, vol. 601, p. 154214, 2022. DOI: https://doi.org/10.1016/j.apsusc.2022.154214

Z. Jing, Z. Zhong, C. Zhang, and Q. Gao, “Co-doped LaFeO3 gas sensor for fast low-power acetone detection,” Journal of Nanoelectronics and Optoelectronics, vol. 17, pp. 775-784, 2022. DOI: https://doi.org/10.1166/jno.2022.3251

Z. Li, A. A. Haidry, B. Gao, T. Wang, and Z. Yao, “The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2,” Applied Surface Science, vol. 412, pp. 638-647, 2017. DOI: https://doi.org/10.1016/j.apsusc.2017.03.156

E. Suhendi, A. E. Putri, M. T. Ulhakim, A. Setiawan, and D. G. Syarif, “Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor application,” AIMS Materials Science, vol. 9, pp. 105-118, 2022. DOI: https://doi.org/10.3934/matersci.2022007

X. Peng, J. Liu, Y. Tan, R. Mo, and Y. Zhang, “A CuO thin film type sensor via inkjet printing technology with high reproducibility for ppb-level formaldehyde detection,” Sensors and Actuators: B. Chemical, vol. 362, p. 131775, 2022. DOI: https://doi.org/10.1016/j.snb.2022.131775

L. Lv, P. Cheng, Y. Zhang, Y. Zhang, Z. Lei, Y. Wang, L. Xu, Z. Weng, and C. Li, “Ultra-high response acetone gas sensor based on ZnFe2O4 pleated hollow microspheres prepared by green NaCl template,” Sensors and Actuators: B. Chemical, vol. 358, p. 131490, 2022. DOI: https://doi.org/10.1016/j.snb.2022.131490

L. Lv, Y. Wang, P. Cheng, Y. Zhang, Y. Zhang, Z. Lei, L. Xu and Z. Wei, “Production of MFe2O4 (M = Zn, Ni, Cu, Co and Mn) multiple cavities microspheres with salt template to assemble a high-performance acetone gas sensor,” Journal of Alloys and Compounds, vol. 904, p. 164054, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164054

B. H. Waghchaure, V. A. Adole, B. S. Jagdale, and P. B. Koli, “Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environment rectification,” Inorganic Chemistry Communications, vol. 140, p. 109450, 2022. DOI: https://doi.org/10.1016/j.inoche.2022.109450

S. Paneru, and D. Kumar, “Ag-doped-CuO nanoparticles supported polyaniline (PANI) based novel electrochemical sensor for sensitive detection of paraoxon-ethyl in three real samples,” Sensors and Actuators: B. Chemical, vol. 379, p. 133270, 2023. DOI: https://doi.org/10.1016/j.snb.2022.133270

K. Suganthi, E. Vinoth, L. Sudha, P. Bharathi, and M. Navaneethan, “Manganese (Mn2+) doped hexagonal prismatic zinc oxide (ZnO) nanostructures for chemiresistive NO2 sensor,” Sensors and Actuators: B. Chemical, vol. 380, p. 133293, 2023. DOI: https://doi.org/10.1016/j.snb.2023.133293

C. Rana, S. R. Bera, and S. Saha, “growth of SnS nanoparticles and its ability as ethanol gas sensor,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 2016-2029, 2019. DOI: https://doi.org/10.1007/s10854-018-0473-3

B. A. Krishna, P. N. Kumar, and P. Prema, “Green synthesis of copper oxide nanoparticles using Cinnamomum malabatrum leaf extract and its antibacterial activity,” Indian Journal of Chemical Technology (IJCT), vol. 27, pp. 525-530, 2020.

D. V. S. Sanjana, B. Balraj, C. Siva, and S. Amuthameena, “Green hydrothermal synthesis of Ga doping derived 3D ZnO nanosatellites for high sensitive gas sensors,” Sensors and Actuators: B. Chemical, vol. 379, p. 133215, 2023. DOI: https://doi.org/10.1016/j.snb.2022.133215

G. Manjunath, S. Pujari, D. R. Patil, and S. Mandal, “A scalable screen-printed high performance ZnO-UV and gas sensor: effect of solution combustion,” Materials Science in Semiconductor Processing, vol. 107, p. 104828, 2020. DOI: https://doi.org/10.1016/j.mssp.2019.104828

M. T. Rahman, M. S. A. Bhuiyan, M. J. Islam, K. M. Reza, A. Gurung, and Q. Qiao, “A flexible, ultrasensitive, and highly selective bi-functional acetone and ethanol gas sensor,” 2022 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, pp. 84-87, 2022. DOI: https://doi.org/10.1109/ICECE57408.2022.10088805

J. Walker, P. Karnati, S. A. Akbar, and P. A. Morris, “Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors,” Sensors and Actuators: B. Chemical, vol. 355, p. 131242, 2022. DOI: https://doi.org/10.1016/j.snb.2021.131242

H. Y. Lee, J. H. Bang, S. M. Majhi, A. Mirzaei, K. Y. Shin, D. J. Yu, W. Oum, S. Kang, M. L. Lee, S. S. Kim, and H. W. Kim, “Conductometric ppb-level acetone gas sensor based on one-pot synthesized Au @Co3O4 core-shell nanoparticles,” Sensors and Actuators: B. Chemical, vol. 359, p. 131550, 2022. DOI: https://doi.org/10.1016/j.snb.2022.131550

Q. Yu, X. Gong, Y. Jiang, L. Zhao, T. Wang, F. Liu, X. Yang, X. Liang, F. Liu, P. Sun, and G. Lu, “Bimetallic MOFs-derived core-shell structured mesoporous Sn-doped NiO for conductometric ppb-level xylene gas sensors,” Sensors and Actuators: B. Chemical, vol. 372, p. 132620, 2022. DOI: https://doi.org/10.1016/j.snb.2022.132620

B. Song, M. Yang, L. Liu, X. Zhang, Z. Deng, Y. Xu, L. Huo, and S. Gao, “Biotemplate-derived mesoporous Cr2O3 tube bundles for highly sensitive and selective detection of trace acetone at low temperature,” Chemical Engineering Journal, vol. 450, p. 138211, 2022. DOI: https://doi.org/10.1016/j.cej.2022.138211

S. Li, C. Wang, Z. Lei, S. Sun, J. Gao, P. Cheng, and H. Wang, “Synergistic adsorption effect on Co3O4(110) surface to promote the ethanol sensing properties: Experiment and theory,” Applied Surface Science, vol. 612, p. 155776, 2023. DOI: https://doi.org/10.1016/j.apsusc.2022.155776

H. Haryadi, D. G. Syarif, and E. Suhendi, “The effect of couple doping Gd and Co on the physical characteristics of LaFeO3 thick film for acetone gas sensor application,” Jurnal Penelitian Fisika dan Aplikasinya (JPFA), vol. 12, pp. 115-126, 2022. DOI: https://doi.org/10.26740/jpfa.v12n2.p115-126

C. Cao, J. Li, Y. Hu, L. Zhang, and W. Yang, “Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO2 reduction of LaFeO3 perovskite,” Nano Research, vol. 17, pp. 3733-3744, 2024. DOI: https://doi.org/10.1007/s12274-023-6285-7

H. Zhang, R. Zhang, Z. wu, F. Yang, M. Luo, G. Yao, Z. Ao, and B. Lai, “Cobalt-doped boosted the peroxymonosulfate activation performance of LaFeO3 perovskite for atrazine degradation,” Chemical Engineering Journal, vol. 452, p. 139427, 2023. DOI: https://doi.org/10.1016/j.cej.2022.139427

M. A. Njoroge, N. M. Kirimi, and K. P. Kuria, “Spinel ferrites gas sensors: a review of sensing parameters, mechanism and the effects of ion substitution,” Critical Review in Solid State and Materials Sciences, vol. 47, pp. 807-836, 2022. DOI: https://doi.org/10.1080/10408436.2021.1935213

K. Chen, Y. Zhou, R. Jin, T. Wang, F. Liu, C. Wang, X. Yan, P. Sun, and G. Lu, “Gas sensor based on cobalt-doped 3D inverse opal SnO2 for air quality monitoring,” Sensors and Actuators: B. Chemical, vol. 350, p. 130807, 2022. DOI: https://doi.org/10.1016/j.snb.2021.130807

N. M. Yusof, S. Ibrahim, and S. Rozali, “Advances on graphene-based gas sensors for acetone detection based on its physical and chemical attributes,” Journal of Materials Research, vol. 37, pp. 405-423, 2022. DOI: https://doi.org/10.1557/s43578-021-00456-3

B. Zhou, S. Yang, X. Jiang, and W. Song, “Experimental study on oxygen adsorption capacity and oxidation characteristics of coal samples with different particle sizes,” Fuel, vol. 331, p. 125954, 2023. DOI: https://doi.org/10.1016/j.fuel.2022.125954

X. Bai, Z. Liu, H. Lv, J. Chen, M. Khan, J. Wang, B. Sun, Y. Zhang, K. Kan, and K. Shi, “N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core-shell structure as high-efficiency room temperature NO2 gas sensor,” Journal of Hazardous Materials, vol. 423, p. 127120, 2022. DOI: https://doi.org/10.1016/j.jhazmat.2021.127120

H. Fu, Z. Feng, S. Liu, P. Wang, C. Zhao, and C. Wang, “Enhanced ethanol sensing performance of N-doped ZnO derived from ZIF-8,” Chinese Chemical Letters, vol. 34, p. 107425, 2023. DOI: https://doi.org/10.1016/j.cclet.2022.04.023

P. Srinivasan, M. Ezhilan, A. J. Kulandaisamy, K. J. Babu, and J. B. B. Rayappan, “Room temperature chemiresistive gas sensors: challenges and strategies – a mini review,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 15825-15847, 2019. DOI: https://doi.org/10.1007/s10854-019-02025-1

J. H. Choi, J. S. Seo, H. E. Jeong, K. Song, H. Baek, S. E. Shin, and Y. Qian, “Effect of field-effect and schottky heterostcructure on p-type graphene-based gas sensor modified by n-type In2O3 and phenylenediamine,” Applied Surface Science, vol. 578, p. 152025, 2022. DOI: https://doi.org/10.1016/j.apsusc.2021.152025

W. Qin, Z. Yuan, Y. Shen, R. Zhang, and F. Meng, “Phosphorus-doped porous perovskite LaFe1-xPxO3-δ nanosheets with rich surface oxygen vacancies for ppb level acetone sensing at low temperature,” Chemical Engineering Journal, vol. 431, p. 134280, 2022. DOI: https://doi.org/10.1016/j.cej.2021.134280

S. Shah, S. Hussain, L. A. Khan, K. Yusuf, R. K. Manavalan, Y. Tianyan, X. Zhang, G. Liu, and G. Qiao, “ppb-level H2 gas-sensor based on porous Ni-MOF derived NiO@CuO nanoflowers for superior sensing performance,” Materials Research Bulletin, vol. 180, p. 11321, 2024. DOI: https://doi.org/10.1016/j.materresbull.2024.113021

B. Yang, N. V. Myung, and T. Tran, “1D metal oxide semi-conductor materials for chemiresistive gas sensors: a review,” Advanced Electronic Materials, vol. 7, p. 2100271, 2021. DOI: https://doi.org/10.1002/aelm.202100271

X. Hu, Z. Zhu, C. Chen, T. Wen, X. Zhao, and L. Xie, “Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature,” Sensors and Actuators B: Chemical, vol. 253, pp. 809-817, 2017. DOI: https://doi.org/10.1016/j.snb.2017.06.183

N. Sun, Q. Tian, W. Bian, X. Wang, H. Dou, C. Li, Y. Zhang, C. Gong, X. You, X. Du, P. Yin, X. Zhao, Y. Yang, X. Liu,

Q. Jing, and B. Liu, “Highly sensitive and lower detection-limit NO2 gas sensor based on Rh-doped ZnO nanofibers prepared by electrospinning,” Applied Surface Science, vol. 614, pp. 156213(1-10), 2023. DOI: https://doi.org/10.1016/j.apsusc.2022.156213

E. Suhendi, Z. L. Amanda, M. T. Ulhakim, A. Setiawan, and D. G. Syarif, “The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor,” Journal of Metals, Materials and Minerals, vol. 31, pp. 71-77, 2021. DOI: https://doi.org/10.55713/jmmm.v31i2.1053

E. Suhendi, M. T. Ulhakim, A. Setiawan, and D. G. Syarif, “The effect of SrO doping on LaFeO3 using yarosite extraction based ethanol gas sensors performance fabricated by co-precipitation method,” International Journal of Nanoelectronics and Materials, vol. 12, pp. 185-192, 2019.

C. Wang, Q. Rong, Y. Zhang, J. Hu, B. Zi, Z. Zhu, J. Zhang, and Q. Liu, “Molecular imprinting Ag-LaFeO3 spheres for highly sensitive acetone gas detection,” Materials Research Bulletin, vol. 109, pp. 265-272, 2019. DOI: https://doi.org/10.1016/j.materresbull.2018.09.040

K. Yang, J. Ma, X. Qiao, Y. Cui, L. Jia, and H. Wang, “Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde,” Sensors and Actuators B: Chemical, vol. 313, p. 128022, 2020. DOI: https://doi.org/10.1016/j.snb.2020.128022

H. Wu, F. Meng, X. Gong, W. Tao, L. Zhao, T. Wang, F. Liu, X. Yan, P. Sun, and G. Lu, “A solution to boost acetone sensing performance of perovskite oxides chemiresistors: In-situ derived p-p heterostructures,” Sensors and Actuators: B. Chemical, vol. 378, p. 133092, 2023. DOI: https://doi.org/10.1016/j.snb.2022.133092

A. Mirzaei, J. Lee, S. M. Majhi, M. Weber, M. Bechelany, H. W. Kim, and S. S. Kim, “Resistive gas sensors based on metal-oxide nanowires,” Journal of Applied Physics, vol. 126, p. 241102, 2019. DOI: https://doi.org/10.1063/1.5118805

Downloads

Published

2025-03-18

How to Cite

[1]
A. . SETIAWAN, F. A. . SHEELMAREVAA, M. T. . ULHAKIM, D. G. . SYARIF, and E. SUHENDI, “Enhancing acetone gas sensor performance with cobalt oxide doping in LaFeO\(_{3}\) prepared by co-precipitation”, J Met Mater Miner, vol. 35, no. 1, p. e1919, Mar. 2025.

Issue

Section

Original Research Articles

Categories