Single electrode mode triboelectric nanogenerator for recognition of animal sounds

ผู้แต่ง

  • Archana PANDA Department of Electronics and Communication Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Kunal Kumar DAS Department of Electronics and Communication Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India
  • Kushal Ruthvik KAJA Department of Physics, Vellore Institute of Technology, Vijayawada 522237, India
  • Mohamed BELAL Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
  • Basanta Kumar PANIGRAHI Department of Electrical Engineering, Siksha O Anusandhan (deemed to be University), Bhubaneswar 751030, India

DOI:

https://doi.org/10.55713/jmmm.v34i4.2170

คำสำคัญ:

Triboelectric, Polymer, Porous, Animal sound, Energy harvesting

บทคัดย่อ

This research presents an innovative and sustainable solution by designing triboelectric nanogenerators (TENGs) for energy harvesting. The fabrication process of TENGs includes PDMS and aluminum. The two single electrode mode TENG was designed one is plain PDMS/Al and the other is porous PDMS/Al TENG devices. The porous PDMS/Al TENG device generated a voltage and current of 7 V and 5 nA for 2 cm ´ 2 cm device area. Moreover, the TENG system was employed to successfully charge capacitors, and recognize various animal sounds. This study underscores the promising potential of harvesting energy from body movements and powering of devices, paving the way for eco-friendly solutions to energy generation.

Downloads

Download data is not yet available.

เอกสารอ้างอิง

A. Kulandaivel, S. Potu, A. Babu, M. Navaneeth, V. Mahesh, R. R. Kumar, and U. K. Khanapuram, "Advances in ferrofluid-based triboelectric nanogenerators: Design, performance, and prospects for energy harvesting applications," Nano Energy, vol. 120, p. 109110, 2024. DOI: https://doi.org/10.1016/j.nanoen.2023.109110

T. Charoonsuk, S. Pongampai, P. Pakawanit, and N. Vittayakorn, "Achieving a highly efficient chitosan-based triboelectric nano-generator via adding organic proteins: Influence of morphology and molecular structure," Nano Energy, vol. 89, p. 106430, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.106430

M. Sahu, S. Hajra, H.-G. Kim, H.-G. Rubahn, Y. Kumar Mishra, and H. J. Kim, "Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications," Nano Energy, vol. 88, p. 106255, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.106255

S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee, H. Shin, V. Vivekananthan, Y. Yang, Y. K. Mishra, and H. J. Kim, "Hybrid nanogenerators for ocean energy harvesting: Mechanisms, designs, and applications," Small, vol. 19, no. 25, p. 2300847, 2023. DOI: https://doi.org/10.1002/smll.202300847

E. Elsanadidy, I. M. Mosa, D. Luo, X. Xiao, J. Chen, Z. L. Wang, and J. F. Rusling, "Advances in triboelectric nanogenerators for self‐powered neuromodulation," Advanced Functional Materials, p. 2211177, 2023. DOI: https://doi.org/10.1002/adfm.202211177

Y. Wei, X. Li, Z. Yang, J. Shao, Z. L. Wang, and D. Wei, "Contact electrification at the solid–liquid transition interface," Materials Today, 2024. DOI: https://doi.org/10.1016/j.mattod.2024.03.013

Z. L. Wang, and A. C. Wang, "On the origin of contact-electrification," Materials Today, vol. 30, pp. 34-51, 2019. DOI: https://doi.org/10.1016/j.mattod.2019.05.016

H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, "Quantifying the triboelectric series," Nature Communications, vol. 10, no. 1, p. 1427, 2019. DOI: https://doi.org/10.1038/s41467-019-09461-x

R. Khwanming, S. Pongampai, N. Vittayakorn, and T. Charoonsuk, "Cellulose-based fabrics triboelectric nanogenerator: Effect of fabric microstructure on its electrical output," Journal of Metals, Materials and Minerals, vol. 33, no. 3, p. 1673, 2023. DOI: https://doi.org/10.55713/jmmm.v33i3.1673

G. Yadav, K. Jindal, and M. Tomar, "Fabrication of GaN-based MSM droplet triboelectric nanogenerator by the conjunction of photovoltaic and triboelectric effect," Journal of Alloys and Compounds, vol. 944, p. 169178, 2023. DOI: https://doi.org/10.1016/j.jallcom.2023.169178

K. Ruthvik, A. Babu, S. Potu, M. Navaneeth, V. Mahesh, U. K. Khanapuram, R. R. Kumar, B. M. Rao, H. Divi, and K. Prakash, "High-performance triboelectric nanogenerator based on 2D graphitic carbon nitride for self-powered electronic devices," Materials Letters, vol. 350, p. 134947, 2023. DOI: https://doi.org/10.1016/j.matlet.2023.134947

A. Babu, K. Ruthvik, P. Supraja, M. Navaneeth, K. U. Kumar, R. R. Kumar, K. Prakash, and N. Raju, "High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting," Journal of Materials Science: Materials in Electronics, vol. 34, no. 33, p. 2195, 2023. DOI: https://doi.org/10.1007/s10854-023-11644-8

K. N. Kim, S. Y. Kim, S. H. Choi, M. Lee, W. Song, J. Lim, S. S. Lee, and S. Myung, "All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers based on MXene nanoflakes," Advanced Electronic Materials, vol. 8, no. 12, p. 2200819, 2022. DOI: https://doi.org/10.1002/aelm.202200819

W. Liu, Z. Wang, and C. Hu, "Advanced designs for output improvement of triboelectric nanogenerator system," Materials Today, vol. 45, pp. 93-119, 2021. DOI: https://doi.org/10.1016/j.mattod.2020.11.012

J. A. L. Jayarathna, and K. R. Kaja, "Energy-Harvesting device based on lead-free perovskite," AI, Computer Science and Robotics Technology, vol. 3, 2024. DOI: https://doi.org/10.5772/acrt.20240036

W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, "Triboelectric nanogenerator: Structure, mechanism, and applications," ACS Nano, vol. 15, no. 1, pp. 258-287, 2021. DOI: https://doi.org/10.1021/acsnano.0c09803

N. Kumar, B. Mahale, T. S. Muzata, and R. Ranjan, "Energy harvesting with flexible piezocomposite fabricated from a biodegradable polymer," International Journal of Energy Research, vol. 45, no. 13, pp. 19395-19404, 2021. DOI: https://doi.org/10.1002/er.7069

S. A. Behera, S. Hajra, S. Panda, A. K. Sahu, P. Alagarsamy, Y. K. Mishra, H. J. Kim, and P. G. R. Achary, "Synergistic

energy harvesting and humidity sensing with single electrode triboelectric nanogenerator," Ceramics International, vol. 50, no. 19, pp. 37193-37200, 2024. DOI: https://doi.org/10.1016/j.ceramint.2024.07.110

V. Vivekananthan, S. Arunmetha, S. Srither, P. S. S. Babu, S. Hajra, and B. Dudem, "A highly wearable single-electrode mode triboelectric nanogenerator made of flexible polyvinylidene fluoride transparent film for muscular motion monitoring," Journal of Physics: Conference Series, vol. 2471, no. 1: IOP Publishing, p. 012025, 2023. DOI: https://doi.org/10.1088/1742-6596/2471/1/012025

A. M. Padhan, S. Hajra, M. Sahu, S. Nayak, H. J. Kim, and P. Alagarsamy, "Single-electrode mode TENG using ferromagnetic NiO-Ti based nanocomposite for effective energy harvesting," Materials Letters, vol. 312, p. 131644, 2022. DOI: https://doi.org/10.1016/j.matlet.2021.131644

Y. Yun, S. Jang, S. Cho, S. H. Lee, H. J. Hwang, and D. Choi, "Exo-shoe triboelectric nanogenerator: Toward high-performance wearable biomechanical energy harvester," Nano Energy, vol. 80, p. 105525, 2021. DOI: https://doi.org/10.1016/j.nanoen.2020.105525

S. Hajra, S. Panda, H. Khanberh, V. Vivekananthan, E. Chamanehpour, Y. K. Mishra, and H. J. Kim, "Revolutionizing self-powered robotic systems with triboelectric nanogenerators," Nano Energy, vol. 115, p. 108729, 2023. DOI: https://doi.org/10.1016/j.nanoen.2023.108729

M. Rakshita, M. Navaneeth, A. S. Aachal, P. P. Payal, A. K. Durga Prasad Kasireddi, K. K. Uday, R. K. Rajaboina, and D. Haranath, "Phosphor-based triboelectric nanogenerators for mechanical energy harvesting and self-powered systems," ACS Applied Electronic Materials, vol. 6, no. 3, pp. 1821-1828, 2024. DOI: https://doi.org/10.1021/acsaelm.3c01728

G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A. Lee-Sie Eh, and P. S. Lee, " Electrochromo-supercapacitor based on direct growth of NiO nanoparticles," Nano Energy, vol. 12, pp. 258-267, 2015. DOI: https://doi.org/10.1016/j.nanoen.2014.12.031

M. Waseem, M. Ahmad, A. Parveen, and M. Suhaib, "Battery technologies and functionality of battery management system for EVs: Current status, key challenges, and future prospectives," Journal of Power Sources, vol. 580, p. 233349, 2023. DOI: https://doi.org/10.1016/j.jpowsour.2023.233349

K. Lolupima, J. Cao, D. Zhang, C. Yang, X. Zhang, and J. Qin, "A review on the development of metals-doped Vanadium oxides for zinc-ion battery," Journal of Metals, Materials and Minerals, vol. 34, no. 3, p. 2084, 2024. DOI: https://doi.org/10.55713/jmmm.v34i3.2084

M. Yuan, C. Li, H. Liu, Q. Xu, and Y. Xie, "A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing," Nano Energy, vol. 85, p. 105962, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.105962

H.-S. Kim, N. Kumar, J.-J. Choi, W.-H. Yoon, S. N. Yi, and J. Jang, "Self‐powered smart proximity‐detection system based on a hybrid magneto‐mechano‐electric generator," Advanced Intelligent Systems, vol. 6, no. 1, p. 2300474, 2024. DOI: https://doi.org/10.1002/aisy.202300474

M. Cui, H. Guo, W. Zhai, C. Liu, C. Shen, and K. Dai, "Template‐assisted electrospun ordered hierarchical microhump arrays‐based multifunctional triboelectric nanogenerator for tactile sensing and animal voice‐emotion identification," Advanced Functional Materials, vol. 33, no. 46, p. 2301589, 2023. DOI: https://doi.org/10.1002/adfm.202301589

A. Babu, S. Gupta, R. Katru, N. Madathil, A. Kulandaivel, P. Kodali, H. Divi, H. Borkar, U. K. Khanapuram, and R. K. Rajaboina "From acoustic to electric: Advanced triboelectric nanogenerators with fe‐based metal–organic frameworks," Energy Technology, vol. 12, no. 8, p. 2400796, 2024. DOI: https://doi.org/10.1002/ente.202400796

I. Miranda, A. Souza, P. Sousa, J. Ribeiro, E. M. Castanheira, R. Lima, and G. Minas, "Properties and applications of PDMS for biomedical engineering: A review," (in eng), Journal of Functional Biomaterials, vol. 13, no. 1, 2021. DOI: https://doi.org/10.3390/jfb13010002

P. Ferreira, Á. Carvalho, T. R. Correia, B. P. Antunes, I. J. Correia, and P. Alves, "Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses," Science and Technology of Advanced Materials, vol. 14, no. 5, p. 055006, 2013. DOI: https://doi.org/10.1088/1468-6996/14/5/055006

I. Nolasco, S. Singh, V. Morfi, V. Lostanlen, A. Strandburg-Peshkin, E. Vidaña-Vila, L. Gill, H. Pamuła, H. Whitehead, I. Kiskin, F. H. Jensen, J. Morford, M. G. Emmerson, E. Versace, E. Grout, H. Liu, B. Ghani, D. Stowell, "Learning to detect an animal sound from five examples," Ecological Informatics, vol. 77, p. 102258, 2023. DOI: https://doi.org/10.1016/j.ecoinf.2023.102258

ดาวน์โหลด

เผยแพร่แล้ว

2024-11-26

วิธีการอ้างอิง

[1]
A. . PANDA, K. K. DAS, K. R. KAJA, M. BELAL, และ B. K. PANIGRAHI, “Single electrode mode triboelectric nanogenerator for recognition of animal sounds”, J Met Mater Miner, ปี 34, ฉบับที่ 4, น. 2170, พ.ย. 2024.

ฉบับ

บท

Original Research Articles

Categories