Single electrode mode triboelectric nanogenerator for recognition of animal sounds
DOI:
https://doi.org/10.55713/jmmm.v34i4.2170คำสำคัญ:
Triboelectric, Polymer, Porous, Animal sound, Energy harvestingบทคัดย่อ
This research presents an innovative and sustainable solution by designing triboelectric nanogenerators (TENGs) for energy harvesting. The fabrication process of TENGs includes PDMS and aluminum. The two single electrode mode TENG was designed one is plain PDMS/Al and the other is porous PDMS/Al TENG devices. The porous PDMS/Al TENG device generated a voltage and current of 7 V and 5 nA for 2 cm ´ 2 cm device area. Moreover, the TENG system was employed to successfully charge capacitors, and recognize various animal sounds. This study underscores the promising potential of harvesting energy from body movements and powering of devices, paving the way for eco-friendly solutions to energy generation.
Downloads
เอกสารอ้างอิง
A. Kulandaivel, S. Potu, A. Babu, M. Navaneeth, V. Mahesh, R. R. Kumar, and U. K. Khanapuram, "Advances in ferrofluid-based triboelectric nanogenerators: Design, performance, and prospects for energy harvesting applications," Nano Energy, vol. 120, p. 109110, 2024. DOI: https://doi.org/10.1016/j.nanoen.2023.109110
T. Charoonsuk, S. Pongampai, P. Pakawanit, and N. Vittayakorn, "Achieving a highly efficient chitosan-based triboelectric nano-generator via adding organic proteins: Influence of morphology and molecular structure," Nano Energy, vol. 89, p. 106430, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.106430
M. Sahu, S. Hajra, H.-G. Kim, H.-G. Rubahn, Y. Kumar Mishra, and H. J. Kim, "Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications," Nano Energy, vol. 88, p. 106255, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.106255
S. Panda, S. Hajra, Y. Oh, W. Oh, J. Lee, H. Shin, V. Vivekananthan, Y. Yang, Y. K. Mishra, and H. J. Kim, "Hybrid nanogenerators for ocean energy harvesting: Mechanisms, designs, and applications," Small, vol. 19, no. 25, p. 2300847, 2023. DOI: https://doi.org/10.1002/smll.202300847
E. Elsanadidy, I. M. Mosa, D. Luo, X. Xiao, J. Chen, Z. L. Wang, and J. F. Rusling, "Advances in triboelectric nanogenerators for self‐powered neuromodulation," Advanced Functional Materials, p. 2211177, 2023. DOI: https://doi.org/10.1002/adfm.202211177
Y. Wei, X. Li, Z. Yang, J. Shao, Z. L. Wang, and D. Wei, "Contact electrification at the solid–liquid transition interface," Materials Today, 2024. DOI: https://doi.org/10.1016/j.mattod.2024.03.013
Z. L. Wang, and A. C. Wang, "On the origin of contact-electrification," Materials Today, vol. 30, pp. 34-51, 2019. DOI: https://doi.org/10.1016/j.mattod.2019.05.016
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, "Quantifying the triboelectric series," Nature Communications, vol. 10, no. 1, p. 1427, 2019. DOI: https://doi.org/10.1038/s41467-019-09461-x
R. Khwanming, S. Pongampai, N. Vittayakorn, and T. Charoonsuk, "Cellulose-based fabrics triboelectric nanogenerator: Effect of fabric microstructure on its electrical output," Journal of Metals, Materials and Minerals, vol. 33, no. 3, p. 1673, 2023. DOI: https://doi.org/10.55713/jmmm.v33i3.1673
G. Yadav, K. Jindal, and M. Tomar, "Fabrication of GaN-based MSM droplet triboelectric nanogenerator by the conjunction of photovoltaic and triboelectric effect," Journal of Alloys and Compounds, vol. 944, p. 169178, 2023. DOI: https://doi.org/10.1016/j.jallcom.2023.169178
K. Ruthvik, A. Babu, S. Potu, M. Navaneeth, V. Mahesh, U. K. Khanapuram, R. R. Kumar, B. M. Rao, H. Divi, and K. Prakash, "High-performance triboelectric nanogenerator based on 2D graphitic carbon nitride for self-powered electronic devices," Materials Letters, vol. 350, p. 134947, 2023. DOI: https://doi.org/10.1016/j.matlet.2023.134947
A. Babu, K. Ruthvik, P. Supraja, M. Navaneeth, K. U. Kumar, R. R. Kumar, K. Prakash, and N. Raju, "High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting," Journal of Materials Science: Materials in Electronics, vol. 34, no. 33, p. 2195, 2023. DOI: https://doi.org/10.1007/s10854-023-11644-8
K. N. Kim, S. Y. Kim, S. H. Choi, M. Lee, W. Song, J. Lim, S. S. Lee, and S. Myung, "All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers based on MXene nanoflakes," Advanced Electronic Materials, vol. 8, no. 12, p. 2200819, 2022. DOI: https://doi.org/10.1002/aelm.202200819
W. Liu, Z. Wang, and C. Hu, "Advanced designs for output improvement of triboelectric nanogenerator system," Materials Today, vol. 45, pp. 93-119, 2021. DOI: https://doi.org/10.1016/j.mattod.2020.11.012
J. A. L. Jayarathna, and K. R. Kaja, "Energy-Harvesting device based on lead-free perovskite," AI, Computer Science and Robotics Technology, vol. 3, 2024. DOI: https://doi.org/10.5772/acrt.20240036
W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, "Triboelectric nanogenerator: Structure, mechanism, and applications," ACS Nano, vol. 15, no. 1, pp. 258-287, 2021. DOI: https://doi.org/10.1021/acsnano.0c09803
N. Kumar, B. Mahale, T. S. Muzata, and R. Ranjan, "Energy harvesting with flexible piezocomposite fabricated from a biodegradable polymer," International Journal of Energy Research, vol. 45, no. 13, pp. 19395-19404, 2021. DOI: https://doi.org/10.1002/er.7069
S. A. Behera, S. Hajra, S. Panda, A. K. Sahu, P. Alagarsamy, Y. K. Mishra, H. J. Kim, and P. G. R. Achary, "Synergistic
energy harvesting and humidity sensing with single electrode triboelectric nanogenerator," Ceramics International, vol. 50, no. 19, pp. 37193-37200, 2024. DOI: https://doi.org/10.1016/j.ceramint.2024.07.110
V. Vivekananthan, S. Arunmetha, S. Srither, P. S. S. Babu, S. Hajra, and B. Dudem, "A highly wearable single-electrode mode triboelectric nanogenerator made of flexible polyvinylidene fluoride transparent film for muscular motion monitoring," Journal of Physics: Conference Series, vol. 2471, no. 1: IOP Publishing, p. 012025, 2023. DOI: https://doi.org/10.1088/1742-6596/2471/1/012025
A. M. Padhan, S. Hajra, M. Sahu, S. Nayak, H. J. Kim, and P. Alagarsamy, "Single-electrode mode TENG using ferromagnetic NiO-Ti based nanocomposite for effective energy harvesting," Materials Letters, vol. 312, p. 131644, 2022. DOI: https://doi.org/10.1016/j.matlet.2021.131644
Y. Yun, S. Jang, S. Cho, S. H. Lee, H. J. Hwang, and D. Choi, "Exo-shoe triboelectric nanogenerator: Toward high-performance wearable biomechanical energy harvester," Nano Energy, vol. 80, p. 105525, 2021. DOI: https://doi.org/10.1016/j.nanoen.2020.105525
S. Hajra, S. Panda, H. Khanberh, V. Vivekananthan, E. Chamanehpour, Y. K. Mishra, and H. J. Kim, "Revolutionizing self-powered robotic systems with triboelectric nanogenerators," Nano Energy, vol. 115, p. 108729, 2023. DOI: https://doi.org/10.1016/j.nanoen.2023.108729
M. Rakshita, M. Navaneeth, A. S. Aachal, P. P. Payal, A. K. Durga Prasad Kasireddi, K. K. Uday, R. K. Rajaboina, and D. Haranath, "Phosphor-based triboelectric nanogenerators for mechanical energy harvesting and self-powered systems," ACS Applied Electronic Materials, vol. 6, no. 3, pp. 1821-1828, 2024. DOI: https://doi.org/10.1021/acsaelm.3c01728
G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A. Lee-Sie Eh, and P. S. Lee, " Electrochromo-supercapacitor based on direct growth of NiO nanoparticles," Nano Energy, vol. 12, pp. 258-267, 2015. DOI: https://doi.org/10.1016/j.nanoen.2014.12.031
M. Waseem, M. Ahmad, A. Parveen, and M. Suhaib, "Battery technologies and functionality of battery management system for EVs: Current status, key challenges, and future prospectives," Journal of Power Sources, vol. 580, p. 233349, 2023. DOI: https://doi.org/10.1016/j.jpowsour.2023.233349
K. Lolupima, J. Cao, D. Zhang, C. Yang, X. Zhang, and J. Qin, "A review on the development of metals-doped Vanadium oxides for zinc-ion battery," Journal of Metals, Materials and Minerals, vol. 34, no. 3, p. 2084, 2024. DOI: https://doi.org/10.55713/jmmm.v34i3.2084
M. Yuan, C. Li, H. Liu, Q. Xu, and Y. Xie, "A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing," Nano Energy, vol. 85, p. 105962, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.105962
H.-S. Kim, N. Kumar, J.-J. Choi, W.-H. Yoon, S. N. Yi, and J. Jang, "Self‐powered smart proximity‐detection system based on a hybrid magneto‐mechano‐electric generator," Advanced Intelligent Systems, vol. 6, no. 1, p. 2300474, 2024. DOI: https://doi.org/10.1002/aisy.202300474
M. Cui, H. Guo, W. Zhai, C. Liu, C. Shen, and K. Dai, "Template‐assisted electrospun ordered hierarchical microhump arrays‐based multifunctional triboelectric nanogenerator for tactile sensing and animal voice‐emotion identification," Advanced Functional Materials, vol. 33, no. 46, p. 2301589, 2023. DOI: https://doi.org/10.1002/adfm.202301589
A. Babu, S. Gupta, R. Katru, N. Madathil, A. Kulandaivel, P. Kodali, H. Divi, H. Borkar, U. K. Khanapuram, and R. K. Rajaboina "From acoustic to electric: Advanced triboelectric nanogenerators with fe‐based metal–organic frameworks," Energy Technology, vol. 12, no. 8, p. 2400796, 2024. DOI: https://doi.org/10.1002/ente.202400796
I. Miranda, A. Souza, P. Sousa, J. Ribeiro, E. M. Castanheira, R. Lima, and G. Minas, "Properties and applications of PDMS for biomedical engineering: A review," (in eng), Journal of Functional Biomaterials, vol. 13, no. 1, 2021. DOI: https://doi.org/10.3390/jfb13010002
P. Ferreira, Á. Carvalho, T. R. Correia, B. P. Antunes, I. J. Correia, and P. Alves, "Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses," Science and Technology of Advanced Materials, vol. 14, no. 5, p. 055006, 2013. DOI: https://doi.org/10.1088/1468-6996/14/5/055006
I. Nolasco, S. Singh, V. Morfi, V. Lostanlen, A. Strandburg-Peshkin, E. Vidaña-Vila, L. Gill, H. Pamuła, H. Whitehead, I. Kiskin, F. H. Jensen, J. Morford, M. G. Emmerson, E. Versace, E. Grout, H. Liu, B. Ghani, D. Stowell, "Learning to detect an animal sound from five examples," Ecological Informatics, vol. 77, p. 102258, 2023. DOI: https://doi.org/10.1016/j.ecoinf.2023.102258
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
การอนุญาต
ลิขสิทธิ์ (c) 2024 วารสารโลหะ, วัสดุ และแร่
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.