Fabrication and characterization of zinc anode on nickel conductive cloth for high-performance zinc ion battery applications

Authors

  • Tanapoom MAWINTORN Defense Engineering and Technology, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
  • Kittima LOLUPIMAN Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
  • Napat KIATWISARNKIJ Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
  • Pattaraporn WOOTTAPANIT Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
  • Manickavasakam KARNAN Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
  • Suwimon SANEEWONG NA AYUTTAY Department of Mechanical Engineering, Chulachomklao Royal Military Academy, Nakhon Nayok 26000, Thailand
  • Xinyu ZHANG State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
  • Panyawat WANGYAO Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
  • Jiaqian QIN Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand

DOI:

https://doi.org/10.55713/jmmm.v34i3.2083

Keywords:

Zn-ion batteries, Electroless nickel, flexible zinc-ion battery anodes, cotton

Abstract

The development of advanced materials for energy storage is critical to addressing global energy challenges. Zinc-ion batteries offer a promising solution due to their safety, cost-effectiveness, and environmental friendliness. In this study, we enhanced the conductivity of cotton by coating it with electroless nickel, followed by zinc electroplating, to create a flexible material suitable for zinc-ion battery applications. Cotton was coated with electroless nickel at temperatures ranging from 40°C to 60°C for 1 min to 13 min. Subsequently, zinc electroplating was performed with current densities of 0.02 A·cm‒2 for 60 min, 0.03 A·cm‒2 for 40 min, and 0.04 A·cm‒2 for 30 min. The resulting material was used to assemble a battery with an (NH4)2V10O25·8H2O (NVO) cathode. The Scanning Electron Microscope (SEM) confirms the electroless nickel-coating on cotton fabric at 50°C for 9 min resulted in a low electrical resistance of 15 ohms. Subsequent zinc electroplating at 0.03 A·cm‒2 for 40 min fully interconnected zinc particles. This research demonstrates the significant potential for further development in the field of textile materials for electrical conductivity. It also makes it possible to incorporate materials like silk cloth and other materials in battery components, which will help build more sustainable energy sources in the future.

Downloads

Download data is not yet available.

References

A. Ali Ahmed, A. Alsharif, and Y. Nassar, "Recent Advances in Energy Storage Technologies," Energy Storage, vol. 1, pp. 9-17, 2023.

M. Shetty, K. Manickavasakam, C. Sabbanahalli, C. Bekal, I. I. Misnon, S. Subrahmanya, K. Roy, P. D. Shivaramu, S. Shenoy p, and D. Rangappa, "Rapid single pot synthesis of hierarchical Bi2WO6 microspheres/RGO nanocomposite and its application in energy storage: A supercritical water approach," Journal of Energy Storage, vol. 72, Part B, p. 108116, 2023. DOI: https://doi.org/10.1016/j.est.2023.108116

D. Rangappa, K. Manickavasakam, M. Muniyappa, C. Bekal, S. Shenoy B, I. I. Misnon, M. Kandasamy, and M. Shetty. "A rapid supercritical water approach for one-pot synthesis of a branched BiVO4/RGO composite as a Li-ion battery anode," RSC Advances, vol. 14, no. 11, pp. 7699-7709, 2024. DOI: https://doi.org/10.1039/D3RA07731D

N. Apparla, K. Manickavasakam, and C. S. Sharma, "Augmenting the supercapacitive performance of candle soot-derived activated carbon electrodes in aqueous and non-aqueous electrolytes," Journal of Energy Storage, vol. 73, p. 109162, 2023. DOI: https://doi.org/10.1016/j.est.2023.109162

R. Samantray, K. Manickavasakam, Vivekanand, B. Pradhan, M. Kandasamy, S. C. Mishra, I. I. Misnon, and R. Jose, "Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application," Materials Chemistry and Physics, vol. 314, p. 128885, 2024. DOI: https://doi.org/10.1016/j.matchemphys.2024.128885

A. Godfrey, V. Hetherington, H. Shum, P. Bonato, N. H. Lovell, and S. Stuart, "From A to Z: Wearable technology explained," (in eng), Maturitas, vol. 113, pp. 40-47, 2018. DOI: https://doi.org/10.1016/j.maturitas.2018.04.012

Y. F. Yuan, J. Tu, H. M. Wu, B. Zhang, X. H. Huang, and X. B. Zhao, "Preparation, characteristics and electrochemical performance of Sn6O4(OH)4-coated ZnO for Zn–Ni secondary battery," Electrochemistry Communications, vol. 8, pp. 653-657, 2006. DOI: https://doi.org/10.1016/j.elecom.2006.02.014

S. -H. Lee, C. -W. Yi, and K. Kim, "Characteristics and "Electrochemical Performance of the TiO2-Coated ZnO anode for Ni−Zn secondary batteries," The Journal of Physical Chemistry C, vol. 115, pp. 2572-2577, 2010. DOI: https://doi.org/10.1021/jp110308b

J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Folison, "Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion," (in eng), Science, vol. 356, no. 6336, pp. 415-418, 2017. DOI: https://doi.org/10.1126/science.aak9991

S. S. Hosseiny, and M. Wessling, "13 - Ion exchange membranes for vanadium redox flow batteries," in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, A. Basile and S. P. Nunes Eds.: Woodhead Publishing, 2011, pp. 413-434. DOI: https://doi.org/10.1533/9780857093790.4.413

"Chapter 4 - Primary Batteries," in Batteries for Portable Devices, G. Pistoia Ed. Amsterdam: Elsevier Science B.V., 2005, pp. 33-76. DOI: https://doi.org/10.1016/B978-044451672-5/50004-1

F. R. McLarnon, and E. J. Cairns, "The Secondary alkaline zinc electrode," Journal of The Electrochemical Society, vol. 138, no. 2, p. 645, 1991.

P. Simon, Y. Gogotsi, and B. Dunn, "Materials science. where do batteries end and supercapacitors begin?," (in eng), Science, vol. 343, no. 6176, pp. 1210-1211, 2014. DOI: https://doi.org/10.1126/science.1249625

F. R. Mclarnon, and E. J. Cairns, "The secondary alkaline zinc electrode," Journal of The Electrochemical Society, vol. 138, pp. 645-664, 1991. DOI: https://doi.org/10.1149/1.2085653

E. Frąckowiak, and J. M. Skowroński, "Passivation of zinc in alkaline solution effected by chromates and CrO3–graphite system," Journal of Power Sources, vol. 73, no. 2, pp. 175-181, 1998. DOI: https://doi.org/10.1016/S0378-7753(97)02799-7

D. G. Mackanic, T. H. Chang, Z. Huang, Y. Cui, and Z. Bao, "Stretchable electrochemical energy storage devices," (in eng), Chemical Society Reviews Journal, vol. 49, no. 13, pp. 4466-4495, 2020. DOI: https://doi.org/10.1039/D0CS00035C

Z. Liu, F. Mo. H. Li, M. Zhu, Z. Wang, G. Liang, and C. Zhi, "Advances in flexible and wearable energy‐storage textiles," Small Methods, vol. 2, 2018. DOI: https://doi.org/10.1002/smtd.201800124

L. Hu, H. Wu, F. La Mantia, Y. Yang, and Y. Cui, "Thin, flexible secondary Li-ion paper batteries," (in eng), ACS Nano, vol. 4, no. 10, pp. 5843-5848, 2010. DOI: https://doi.org/10.1021/nn1018158

D. Chen, Z. Lou, K. Jiang, and G. Shen, "Device configurations and future prospects of flexible/stretchable lithium‐ion batteries," Advanced Functional Materials, vol. 28, 2018. DOI: https://doi.org/10.1002/adfm.201805596

W.-w. Liu, X.-b. Yan, J.-w. Lang, C. Peng, and Q.-j. Xue, "Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor," Journal of Materials Chemistry, 10.1039/C2JM32659K vol. 22, no. 33, pp. 17245-17253, 2012. DOI: https://doi.org/10.1039/c2jm32659k

C. Zhang, G. Zhou, W. Rao, L. Fan, W. Xu, and J. Xu, "A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor," Cellulose, vol. 25, no. 8, pp. 4859-4870, 2018. DOI: https://doi.org/10.1007/s10570-018-1893-1

G. G. Gavrilov, Chemical (electroless) Nickel-plating. Portcullis Press, 1979.

G. O. Mallory, J. B. Hajdu, A. Electroplaters, and S. F. Society, Electroless Plating: Fundamentals and Applications. The Society, 1990.

S. Furukawa, and M. Mehregany, "Electroless plating of nickel on silicon for fabrication of high-aspect-ratio microstructures," Sensors and Actuators A: Physical, vol. 56, no. 3, pp. 261-266, 1996. DOI: https://doi.org/10.1016/S0924-4247(96)01318-0

S. Olivera, H. B. Muralidhara,nK. Venkatesh, K. Gopalakrishna, S. S. Vivek, "Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review," Journal of Materials Science, vol. 51, no. 8, pp. 3657-3674, 2016. DOI: https://doi.org/10.1007/s10853-015-9668-7

J. D. Moore, "Acrylonitrile-butadiene-styrene (ABS) - A review," Composites, vol. 4, no. 3, pp. 118-130, 1973. DOI: https://doi.org/10.1016/0010-4361(73)90585-5

S. Ghosh, "Electroless copper deposition: A critical review," Thin Solid Films, vol. 669, pp. 641-658, 2019. DOI: https://doi.org/10.1016/j.tsf.2018.11.016

Y. Boonyongmaneerat, V. Srisupornwichai, C. Aumnate, P. Visuttipitukul, S. T. Dubas, M. Metzner, and M. Zinn, "Strategies for metallizing and electroplating biodegradable PLA," Current Applied Science and Technology, vol. 22, no. 3, 2021. DOI: https://doi.org/10.55003/cast.2022.03.22.013

K. Lolupiman, P. Wangyao, and J. Qin, "Electrodeposition of Zn/TiO2 composite coatings for anode materials of Zinc ion battery," Journal of Metals, Materials and Minerals, vol. 29, no. 4, 2019. DOI: https://doi.org/10.55713/jmmm.v29i4.652

J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin, and R. Liu, "A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode," Journal of Materials Chemistry A, 10.1039/D0TA02486D vol. 8, no. 18, pp. 9331-9344, 2020. DOI: https://doi.org/10.1039/D0TA02486D

J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z-S. Wu, and J. Qin, "Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc‐ion batteries," Nano Energy, vol. 84, p. 105876, 2021. DOI: https://doi.org/10.1016/j.nanoen.2021.105876

X. Li, L. Ma, Y. Zhao, Q. Yang, D. Wang, Z. Huang, G. Liang, F. Mo. Z. Liu, and C. Zhi, "Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery," Materials Today Energy, vol. 14, p. 100361, 2019. DOI: https://doi.org/10.1016/j.mtener.2019.100361

Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang, H. Li, L. Ma, F. Mo. and C. Zhi, "A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility," Energy Storage Materials, vol. 23, pp. 636-645, 2019. DOI: https://doi.org/10.1016/j.ensm.2019.03.007

Y. Huang, J. Liu, Q. Huang, Z. Zheng, P. Hiralal, F. Zheng, D. Ozgit, S. Su, S. Chen, P-H. Tan, S. Zhang, and H. Zhou, "Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode," npj Flexible Electronics, vol. 2, no. 1, 2018. DOI: https://doi.org/10.1038/s41528-018-0034-0

Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong, and X. Lu, "Dendrite‐free zinc deposition induced by multi-functional CNT frameworks for stable flexible Zn‐Ion batteries," Advanced Materials, vol. 31, p. 1903675, 2019. DOI: https://doi.org/10.1002/adma.201903675

Q. Wenda, Y. Li, A. You, Z. Zhang, G. Li, X. Lu, and Y. Tong, "High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth," Journal of Materials Chemistry A., vol. 5, 2017. DOI: https://doi.org/10.1039/C7TA03274A

Downloads

Published

2024-08-19

How to Cite

[1]
T. . MAWINTORN, “Fabrication and characterization of zinc anode on nickel conductive cloth for high-performance zinc ion battery applications”, J Met Mater Miner, vol. 34, no. 3, p. 2083, Aug. 2024.

Issue

Section

Original Research Articles

Categories

Most read articles by the same author(s)

<< < 1 2 3 4 > >>