Structural and electrical properties of 0.98(KO\(_{0.5}\)NaO\(_{0.5}\)NbOO\(_{3}\))-0.02(BiO\(_{0.5}\)NaO\(_{0.5}\)TiOO\(_{3}\)) ceramics
DOI:
https://doi.org/10.55713/jmmm.v33i4.1894คำสำคัญ:
Lead-Free, Piezoelectric, Ferroelectric, Potassium sodium niobate, Bismuth sodium titanateบทคัดย่อ
In the present communication, lead-free ceramics having composition 0.98(K0.5Na0.5NbO3)-0.02(Bi0.5Na0.5TiO3) were synthesized by a high-temperature solid-state reaction route. The Rietveld refinement for the 0.98KNN-0.02BNT reveals an MPB with phase fraction Amm2 (87.76 %) and Pm-3m (12.27%). The SEM study predicted a mean diameter of 0.98KNN-0.02BNT grains as 0.52µm±0.19. The 0.98KNN-0.02BNTceramic displayed a typical hysteresis loop with a remnant polarisation(Pr) of 7.0 μC/cm2, saturation polarization (Ps) of 16 μC/cm2, and a coercive field (Ec) of 26 kV/mm. The electrical, Raman spectra, dielectric, and hysteresis loop study supported a morphotropic phase boundary. The synthesized KNN-BNT lead-free material can be an excellent material for designing new devices like ultrasonic transducers and piezo-actuators.
Downloads
เอกสารอ้างอิง
M. Bah, F. Giovannelli, F.Schoenstein, C. Brosseau, J-R. Deschamps, F. Dorvaux, L. Haumesser, E. Le Clezio, and I. Monot-Laffez “Ultrasonic transducers based on undoped lead- free (K0.5Na0.5)NbO3 ceramics,” Ultrasonics, vol. 63, pp. 23-30, 2015.
K. Wang, F-Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. Lupascu, J. Li, and J. Rodel, “Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics,” Advanced Functional Materials, vol. 23, no. 33, pp. 4079-4086, 2013.
G. C. Edwards, S. H. Choy, H. L. W. Chan, D. A. Scott, and A. Batten, “Lead-free transducer for non-destructive evaluation,” Applied Physics A, vol. 88, no. 1, pp. 209-215, 2007.
J. Rödel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the development of lead-free piezoceramics,” Journal of the American Ceramic Society, vol. 92, no. 6, pp. 1153-1177, 2009.
T. R. Shrout, and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” Journal of Electroceramics, vol. 19, pp. 113-126, 2007.
T. Takenaka, H. Nagata, and Y. Hiruma, “Current developments and prospective of lead-free piezoelectric ceramics,” The Japanese Journal of Applied Physics (JJAP), vol. 47, no. 5S, p. 3787, 2008.
P. K. Panda, “Environmental friendly lead-free piezoelectric materials,” Journal of Materials Science, vol. 44, pp. 5049-5062, 2009.
J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek, and M. Kosec, “Crystal structure and phase transitions of sodium potassium niobate perovskites,” Solid State Sciences, vol. 11, no. 2, pp. 320-324, 2009.
B. Jaffe, W. R. Cook, and H. Jaffe, “The piezoelectric effect in ceramics,” Piezoelectric Ceramics, pp. 7-21, 1971.
L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H Fan, and M. P. Thi, “Orthorhombic to tetragonal structural phase transition in Na0.5K0.5NbO3-based ceramics,” Materials Letters, vol. 68, pp. 300-302, 2012.
J. Fu, R. Zuo, and Y. Liu, “X-ray analysis of phase coexistence and electric poling processing in alkaline niobate-based compositions,” Journal of Alloys and Compounds, vol. 493, no. 1-2, pp. 197-201, 2010.
S. Zhang, R. Xia, and T. R. Shrout, “Modified (K 0.5 Na 0.5) Nb O 3 based lead-free piezoelectrics with broad temperature usage range,” Applied Physics Letters, vol. 91, no. 13, p. 132913, 2007.
Y. Dai, X. Zhang, and G. Zhou, “Phase transitional behavior in K 0.5 Na 0.5 Nb O 3--Li Ta O 3 ceramics,” Applied Physics Letters, vol. 90, no. 26, p. 262903, 2007.
C. Montero-Tavera, M. D. Durruthy-Rodríguez, F. D. Cortés-Vega, and J. M. Yañez-Limón, “Study of the structural, ferroelectric, dielectric, and pyroelectric properties of the K0.5Na0.5NbO3 system doped with Li+, La3+, and Ti4+,” J. Adv. Ceram., vol. 9, no. 3, pp. 329-338, Jun. 2020.
K. Singh, V. Lingwal, S. C. Bhatt, N. S. Panwar, and B. S. Semwal, “Dielectric properties of potassium sodium niobate mixed system,” Mater. Res. Bull., vol. 36, no. 13-14, pp. 2365-2374, 2001.
S.-Y. Chu, W. Water, Y.-D. Juang, and J.-T. Liaw, “Properties of (Na, K) NbO 3 and (Li, Na, K) NbO 3 ceramic mixed systems,” Ferroelectrics, vol. 287, no. 1, pp. 23-33, 2003.
H. E. Mgbemere, M. Hinterstein, and G. A. Schneider, “Structural phase transitions and electrical properties of (KxNa1-x) NbO3-based ceramics modified with Mn,” Journal of the European Ceramic Society, vol. 32, no. 16, pp. 4341-4352, 2012.
K. Kobayashi, K. Hatano, Y. Mizuno, and C. A. Randall, “Rayleigh behavior in the lead free piezoelectric Lix (Na0. 5K0. 5) 1-xNbO3 ceramic,” Applied Physics Express, vol. 5, no. 3, p. 31501, 2012.
J. Swain, A. Priyadarshini, S. Hajra, S. Panda, J. Panda, R. Samantaray, Y. Yamauchi, M. Han, H. J. Kim, and R. Sahu, “Photocatalytic dye degradation by BaTiO3/zeolitic imidazolate framework composite,” Jourmal of Alloys and Compounds, vol. 965, p. 171438, 2023.
M. Połomska, B. Hilczer, M. Kosec, and B. Malič, “Raman scattering studies of lead free (1-x)K0.5Na0.5NbO3-xSrTiO3 relaxors,” Ferroelectrics, vol. 369, no. 1, pp. 149-156, 2008.
L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L. A, Schmitt, H. Fuess, M. Hoelzel, H. Dammak, M. P. Thi, and M. Hintersteing, “Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system,” Journal of the European Ceramic Society, vol. 37, no. 4, pp. 1387-1399, 2017.
S. P. Biswal, J. Panda, T. Samantaray, J. Swain, N. C. Bera, N. Agasti, V. S. Saji, Dr. R Sahu, R. Samantaray, and J. V. Lockard, “Tuning the optical properties of zirconium-based metal-organic
frameworks by post-synthetic modifications,” Materials Letters, vol. 346, p. 134497, 2023.
A. B. Kounga, S.-T. Zhang, W. Jo, T. Granzow, and J. Rödel, “Morphotropic phase boundary in (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics,” Applied Physics Letters, vol. 92, no. 22, p. 222902, 2008.
S. Saha, R. P. Singh, A. Rout, A. Mishra, A. Ali, H. Basumatary, and R. Ranjan, “Inducing ferromagnetism and magnetoelectric coupling in the ferroelectric alloy system BiFeO3--PbTiO3 via additives,” Journal of Applied Physics, vol. 133, no. 6, 2023.
S. Liang, J. Zhu, M. Zheng, P. Zhang, P. Sun, Z. Wang, and X. Zhu, “Microstructure and electrical properties of (Na0.5K0.5)1 −2xMgxNbO3–Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics,” Ceram. International, vol. 40, no. 2, pp. 2763-2768, 2014.
A. Azam, A. S. Ahmed, M. Chaman, and A. H. Naqvi, “Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy,” Journal Applied Physics, vol. 108, no. 9, 2010.
S. A. Behera, R. N. P. Choudhary, and P. G. R. Achary, “Electrical and dielectric properties of EVA/modified lead titanate elastomer composites,” Materials Today: Proceedings, 2023.
S. A. Behera, S. Panda, S. Hajra, B. K. Panigrahi, H. J. Kim, and P. G. R. Achary, “EVA/PZT composite-based triboelectric nanogenerator for energy harvesting,” Energy Technology, 2023.
J. Fleig, and J. Maier, “A finite element study on the grain boundary impedance of different microstructures,” Journal of the Electrochemical Society, vol. 145, no. 6, p. 2081, 1998.
Y.-H. Lin, M. Li, C.-W. Nan, J. Li, J. Wu, and J. He, “Grain and grain boundary effects in high-permittivity dielectric NiO- based ceramics,” Applied Physics Letters, vol. 89, no. 3, 2006.
T. Prodromakis, and C. Papavassiliou, “Engineering the Maxwell--Wagner polarization effect,” Applied Surface Science, vol. 255, no. 15, pp. 6989-6994, 2009.
T. M. Meaz, S. M. Attia, and A. M. A. El Ata, “Effect of tetravalent titanium ions substitution on the dielectric properties of Co--Zn ferrites,” Journal of Magnetism and Magnetic Materials, vol. 257, no. 2-3, pp. 296-305, 2003.
A. Jain, P. KJ, A. K. Sharma, A. Jain, and R. PN, “Dielectric and piezoelectric properties of PVDF/PZT composites: A review,” Polymer Engineering & Science, vol. 55, no. 7, pp. 1589-1616, 2015.
E. S. Kadir, R. N. Gayen, R. Paul, and S. Biswas, “Interfacial effects on ferroelectric and dielectric properties of GO reinforced free-standing and flexible PVDF/ZnO composite membranes: Bias dependent impedance spectroscopy,” Journal of Alloys and Compounds, vol. 843, p. 155974, 2020.
D. P. Almond, C. C. Hunter, and A. R. West, “The extraction of ionic conductivities and hopping rates from ac conductivity data,” Journal of Materials Science, vol. 19, pp. 3236-3248, 1984.
M. Atif, M. Nadeem, R. Grössinger, and R. S. Turtelli, “Studies on the magnetic, magnetostrictive and electrical properties of sol--gel synthesized Zn doped nickel ferrite,” Journal of Alloys and Compounds, vol. 509, no. 18, pp. 5720-5724, 2011.
J. Fleig, “The grain boundary impedance of random micro-structures: numerical simulations and implications for the analysis of experimental data,” Solid State Ionics, vol. 150, no. 1-2, pp. 181-193, 2002.
A. Yadav, S. Sahoo, S. Singh, I. P. Raevski, and P. M. Sarun, “Influence of Mn-doping on the structure, high-temperature dielectric, and conductive properties of NaNbO3 ceramics,” Materials Science and Engineering: B, vol. 297, p. 116796, 2023.
S. Mishra and S. K. Parida, “Electrical and optical properties of a lead-free complex double perovskite BaNaFeMoO6: Photo-voltaic and thermistor applications,” Materials Science and Engineering: B, vol. 296, p. 116629, 2023.
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
การอนุญาต
ลิขสิทธิ์ (c) 2023 วารสารโลหะ, วัสดุ และแร่
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.