Review on surface engineering of NMC for high performance of lithium-ion batteries

Authors

  • Pongsakorn KANTICHAIMONGKOL The Nanoscience and Technology program, Graduate School, Chulalongkorn University, Soi Chula 12, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
  • Thanyalux WANOTAYAN Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Soi Chula 12, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
  • Jiaqian QIN Center of Excellence on Advanced Materials for Energy Storage, Department of Materials Science, Faculty of Science Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand

DOI:

https://doi.org/10.55713/jmmm.v35i2.2338

Keywords:

Lithium-ion Battery, NMC, doping, coating, surface modification

Abstract

The lithium-ion battery stands as a highly promising energy storage system. Among its key components, the cathode material—particularly lithium nickel manganese cobalt oxide (LiNiMnCoO₂), or NMC—is of great importance due to its high specific capacity and cost-effectiveness. Despite its advantages, NMC faces certain challenges, with limited cycle performance being one of the most critical issues. To address this issue, extensive research has been dedicated to surface modification strategies for NMC materials. Studies have identified two primary approaches, doping and coating, both of which have proven effective in enhancing the material's long-term stability. This work systematically examines, categorizes, and compares recent advancements in NMC surface engineering. Additionally, potential future research directions for optimizing NMC cathode materials are proposed.

Downloads

References

L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles," Journal of Power Sources, vol. 226, pp. 272-288, 2013 DOI: https://doi.org/10.1016/j.jpowsour.2012.10.060

S. Pacala, and R. Socolow, "Stabilization wedges: Solving the climate problem for the next 50 years with current technologies," Science, vol. 305, no. 5686, p. 968, 2004. DOI: https://doi.org/10.1126/science.1100103

S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, "Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and Perspectives," ACS Energy Letters, vol. 2, no. 1, pp. 196-223, 2017. DOI: https://doi.org/10.1021/acsenergylett.6b00594

T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, and C. Bock, "Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries," Electrochemical Energy Reviews, vol. 3, no. 1, pp. 43-80, 2020. DOI: https://doi.org/10.1007/s41918-019-00053-3

H. Vikström, S. Davidsson, and M. Höök, "Lithium availability and future production outlooks," Applied Energy, vol. 110, pp. 252-266, 2013. DOI: https://doi.org/10.1016/j.apenergy.2013.04.005

N. Yabuuchi, and T. Ohzuku, "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries," Journal of Power Sources, vol. 119-121, pp. 171-174, 2003. DOI: https://doi.org/10.1016/S0378-7753(03)00173-3

X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, and M. Ouyang, "A review on the key issues of the lithium ion battery degradation among the whole life cycle," eTransportation, vol. 1, p. 100005, 2019. DOI: https://doi.org/10.1016/j.etran.2019.100005

W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries," Angewandte Chemie International Edition, vol. 54, no. 15, pp. 4440-4457, 2015. DOI: https://doi.org/10.1002/anie.201409262

Y. Kim, "Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: Morphology and performance as a cathode material for lithium ion batteries," ACS Applied Materials & Interfaces, vol. 4, no. 5, pp. 2329-2333, 2012. DOI: https://doi.org/10.1021/am300386j

S. Liu, Z. Dang, D. Liu, C. Zhang, T. Huang, and A. Yu, "Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures," Journal of Power Sources, vol. 396, pp. 288-296, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.06.052

T. Chen, X. Li, H. Wang, X. Yan, L. Wang, B. Deng, W. Ge, and M. Qu, "The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material," Journal of Power Sources, vol. 374, pp. 1-11, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2017.11.020

X. Lou, R. Li, X. Zhu, L. Luo, Y. Chen, C. Lin, H. Li, and X. S. Zhao, "New anode material for lithium-ion batteries: aluminum niobate (AlNb11O29)," ACS Applied Materials & Interfaces, vol. 11, no. 6, pp. 6089-6096, 2019. DOI: https://doi.org/10.1021/acsami.8b20246

L. Yang, X. Zhu, X. Li, X. Zhao, K. Pei, W. You, X. Li, Y. Chen, C. Lin, and R. Che, "Conductive copper niobate: Superior Li+-storage capability and novel Li+-transport mechanism," Advanced Energy Materials, vol. 9, no. 39, p. 1902174, 2019. DOI: https://doi.org/10.1002/aenm.201902174

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: Present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015. DOI: https://doi.org/10.1016/j.mattod.2014.10.040

Y. Kato, Z. Ogumi, and J. M. P. Martín, "Lithium-ion batteries : Overview, simulation, and diagnostics," (in English), 2019. [Online]. Available: https://search.ebscohost.com/ login.aspx? direct=true&scope=site&db=nlebk&db=nlabk&AN=2092137. DOI: https://doi.org/10.1201/9780429259340

L. Xu, F. Zhou, B. Liu, H. Zhou, Q. Zhang, J. Kong, and Q. Wang, "Progress in preparation and modification of LiNi0.6Mn0.2 Co0.2O2 cathode material for high energy density li-ion batteries," International Journal of Electrochemistry, vol. 2018, p. 6930386, 2018. DOI: https://doi.org/10.1155/2018/6930386

A. Manthiram, "A reflection on lithium-ion battery cathode chemistry," Nature Communications, vol. 11, no. 1, p. 1550, 2020. DOI: https://doi.org/10.1038/s41467-020-15355-0

G. G. Amatucci, J. M. Tarascon, and L. C. Klein, "Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries," Solid State Ionics, vol. 83, no. 1, pp. 167-173, 1996. DOI: https://doi.org/10.1016/0167-2738(95)00231-6

S. C. Yin, Y. H. Rho, I. Swainson, and L. F. Nazar, "X-ray/ neutron diffraction and electrochemical studies of lithium De/ Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1)," Chemistry of Materials, vol. 18, no. 7, pp. 1901-1910, 2006. DOI: https://doi.org/10.1021/cm0511769

H. Xie, K. Du, G. Hu, Z. Peng, and Y. Cao, "The role of Sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors," The Journal of Physical Chemistry C, vol. 120, no. 6, pp. 3235-3241, 2016. DOI: https://doi.org/10.1021/acs.jpcc.5b12407

K. Kang, and G. Ceder, "Factors that affect Li mobility in layered lithium transition metal oxides," Physical Review B, vol. 74, no. 9, p. 094105, 2006. DOI: https://doi.org/10.1103/PhysRevB.74.094105

Q. Liu, S. Wang, H. Tan, Z. Yang, and J. Zeng, "Preparation and doping mode of doped LiMn2O4 for Li-Ion batteries," 2013. DOI: https://doi.org/10.3390/en6031718

S.-J. Sim, S.-H. Lee, B.-S. Jin, and H.-S. Kim, "Improving the electrochemical performances using a V-doped Ni-rich NCM cathode," Scientific Reports, vol. 9, no. 1, p. 8952, 2019. DOI: https://doi.org/10.1038/s41598-019-45556-7

P. Hou, F. Li, Y. Sun, M. Pan, X. Wang, M. Shao, and X. Xu, "Improving Li+ kinetics and structural stability of nickel-rich layered cathodes by heterogeneous inactive-Al3+ doping," ACS Sustainable Chemistry & Engineering, vol. 6, no. 4, pp. 5653-5661, 2018. DOI: https://doi.org/10.1021/acssuschemeng.8b00909

R. Du, Y. Bi, W. Yang, Z. Peng, M. Liu, Y. Liu, B. Wu, B. Yang, F. Ding, and D. Wang, "Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5V," Ceramics International, vol. 41, no. 5, Part B, pp. 7133-7139, 2015. DOI: https://doi.org/10.1016/j.ceramint.2015.02.026

F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E. M. Erickson, C. Ghanty, D. T. Major, B. Markovsky, and D. Aurbach, "Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2," Journal of Materials Chemistry A, vol. 4, no. 41, pp. 16073-16084, 2016. DOI: https://doi.org/10.1039/C6TA06740A

B. Zhang, L. Li, and J. Zheng, "Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery," Journal of Alloys and Compounds, vol. 520, pp. 190-194, 2012. DOI: https://doi.org/10.1016/j.jallcom.2012.01.004

Y. Li, Q. Su, Q. Han, P. Li, L. Li, C. Xu, X. Cao, nd G. Cao, "Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process," Ceramics International, vol. 43, no. 4, pp. 3483-3488, 2017. DOI: https://doi.org/10.1016/j.ceramint.2016.10.038

Y.-Y. Wang, Y.-Y. Sun, S. Liu, G.-R. Li, and X.-P. Gao, "Na-Doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-Ion batteries," ACS Applied Energy Materials, vol. 1, no. 8, pp. 3881-3889, 2018. DOI: https://doi.org/10.1021/acsaem.8b00630

G.-h. Kang, K.-w. Lee, K. Kwon, and J. Song, "The Effects of incorporated Sn in resynthesized Ni-rich cathode materials on their lithium-ion battery performance," Metals, vol. 7, no. 10, p. 395, 2017. [Online]. DOI: https://doi.org/10.3390/met7100395

K.-J. Park, H.-G. Jung, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun, "Improved cycling stability of Li[Ni0.90Co0.05

Mn0.05]O2 through microstructure modification by boron doping for li-ion batteries," Advanced Energy Materials, vol. 8, no. 25, p. 1801202, 2018.

D. Liu, Z. Wang, and L. Chen, "Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2," Electrochimica Acta, vol. 51, no. 20, pp. 4199-4203, 2006. DOI: https://doi.org/10.1016/j.electacta.2005.11.045

L.-j. Li, X.-h. Li, Z.-x. Wang, H.-j. Guo, P. Yue, W. Chen, and L. Wu, "Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation," Journal of Alloys and Compounds, vol. 507, no. 1, pp. 172-177, 2010. DOI: https://doi.org/10.1016/j.jallcom.2010.07.148

Y.-b. Chen, Y. Hu, F. Lian, and Q.-g. Liu, "Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4−zFzas cathode materials for lithium-ion batteries," International Journal of Minerals, Metallurgy, and Materials, vol. 17, no. 2, pp. 220-224, 2010. DOI: https://doi.org/10.1007/s12613-010-0217-8

H. Liu, C. Cheng, Zongqiuhu, and K. Zhang, "The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries," Materials Chemistry and Physics, vol. 101, no. 2, pp. 276-279, 2007. DOI: https://doi.org/10.1016/j.matchemphys.2006.05.006

D.-Q. Liu, Z.-Z. He, and X.-Q. Liu, "Synthesis and characterization of LiGaxMn2−xO4 (0≤x≤0.05) by triethanolamine-assisted sol–gel method," Journal of Alloys and Compounds, vol. 440, no. 1, pp. 69-73, 2007. DOI: https://doi.org/10.1016/j.jallcom.2006.09.013

M. Eilers-Rethwisch, M. Winter, and F. M. Schappacher, "Synthesis, electrochemical investigation and structural analysis of doped Li [Ni0.6Mn0.2Co0.2-xMx]O-2 (x=0, 0.05; M = Al, Fe, Sn) cathode materials," (in Multi-Language), Journal of Power Sources, vol. 387, pp. 101-107, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.02.080

A. Eftekhari, Future Lithium-ion Batteries. Royal Society of Chemistry, 2019. DOI: https://doi.org/10.1039/9781788016124

Y. Sun, L. Zhang, Z. Yuan, Y. Shen, C. Hai, X. li, J. Zeng, X. Ren, L. Ma, Z. Xing, D. Shengde, and G. Qi, "Study on potassium doped modification of Li1.2Ni0.13Co0.13Mn0.54O2 materials synthesized by novel method for lithium ion battery," Journal of The Electrochemical Society, vol. 165, pp. A333-A338, 2018. DOI: https://doi.org/10.1149/2.1001802jes

S. Sallard, D. Sheptyakov, and C. Villevieille, "Improved electro-chemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+," (in Multi-Language), Journal of Power Sources, vol. 359, pp. 27-36, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.05.028

G.-H. Kim, M.-H. Kim, S.-T. Myung, and Y. K. Sun, "Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2−zFz as lithium intercalation material," Journal of Power Sources, vol. 146, no. 1, pp. 602-605, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.045

Y. Wu, Lithium-Ion Batteries: Fundamentals and Applications, 1 ed. CRC Press, 2015, p. 582. DOI: https://doi.org/10.1201/b18427

Y. Han, X. Cheng, G. Zhao, W. Qiang, and B. Huang, "Effects of Al doping on the electrochemical performances of LiNi0.83 Co0.12Mn0.05O2 prepared by coprecipitation," Ceramics International, vol. 47, no. 9, pp. 12104-12110, 2021. DOI: https://doi.org/10.1016/j.ceramint.2021.01.055

Y. Mo, Y. Wu, G. Yuan, Z. Li, and M. Zhang, "Aluminum and polyanion-doping to improve structural and moisture stability of Ni-rich layered oxides for lithium-ion batteries," RSC Advances, vol. 14, no. 17, pp. 12247-12254, 2024. DOI: https://doi.org/10.1039/D4RA00879K

U.-H. Kim, L.-Y. Kuo, P. Kaghazchi, C. S. Yoon, and Y.-K. Sun, "Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries," ACS Energy Letters, vol. 4, no. 2, pp. 576-582, 2019. DOI: https://doi.org/10.1021/acsenergylett.8b02499

H.-W. Chan, J.-G. Duh, and S.-R. Sheen, "Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery," Surface and Coatings Technology, vol. 188-189, pp. 116-119, 2004. DOI: https://doi.org/10.1016/j.surfcoat.2004.08.065

S.-H. Lee, B.-S. Jin, and H.-S. Kim, "Superior performances of B-doped LiNi0.84Co0.10Mn0.06O2 cathode for advanced LIBs," Scientific Reports, vol. 9, no. 1, p. 17541, 2019. DOI: https://doi.org/10.1038/s41598-019-54115-z

H. Wang, A. M. Hashem, A. E. Abdel-Ghany, S. M. Abbas, R. S. El-Tawil, T. Li, X. Li, H. El-Mounayri, A. Tovar, L. Zhu, A. Mauger, and C. M. Julien, "Effect of cationic (Na(+)) and anionic (F(-)) co-doping on the structural and electrochemical properties of LiNi(1/3)Mn(1/3)Co(1/3)O(2) cathode material for Lithium-Ion Batteries," (in eng), International Journal of Molecular Sciences, vol. 23, no. 12, 2022. DOI: https://doi.org/10.3390/ijms23126755

H. G. Park, K. Min, and K. Park, "A Synergistic Effect of Na+ and Al3+ dual doping on electrochemical performance and structural stability of LiNi0.88Co0.08Mn0.04O2 cathodes for Li-ion batteries," ACS Applied Materials & Interfaces, vol. 14, no. 4, pp. 5168-5176, 2022. DOI: https://doi.org/10.1021/acsami.1c16042

Z. Zhu, Y. Liang, H. Hu, A. Gao, T. Meng, D. Shu, F. Yi, and J. Ling, "Enhanced structural and electrochemical stability of LiNi0.83Co0.11Mn0.06O2 cathodes by zirconium and aluminum co-doping for lithium-ion battery," Journal of Power Sources, vol. 498, p. 229857, 2021. DOI: https://doi.org/10.1016/j.jpowsour.2021.229857

T. Du, X. Cheng, Y. Chen, G. Zhao, W. Qiang, and B. Huang, "Electrochemical performances of LiNi0.83Co0.12Mn0.05O2 by dual doping of Mg and Ti," Solid State Ionics, vol. 366-367, p. 115673, 2021. DOI: https://doi.org/10.1016/j.ssi.2021.115673

N. H. Vu, J. C. Im, S. Unithrattil, and W. B. Im, "Synergic coating and doping effects of Ti-modified integrated layered–spinel Li1.2Mn0.75Ni0.25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries," Journal of Materials Chemistry A, vol. 6, no. 5, pp. 2200-2211, 2018. DOI: https://doi.org/10.1039/C7TA09118D

D. Zuo, G. Tian, X. Li, D. Chen, and K. Shu, "Recent progress in surface coating of cathode materials for lithium ion secondary batteries," Journal of Alloys and Compounds, vol. 706, pp. 24-40, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.02.230

Z. Chen, Y. Qin, K. Amine, and Y. K. Sun, "Role of surface coating on cathode materials for lithium-ion batteries," Journal of Materials Chemistry, vol. 20, no. 36, pp. 7606-7612, 2010. DOI: https://doi.org/10.1039/c0jm00154f

J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, "Zero-strain intercalation cathode for rechargeable Li-Ion cell," Angewandte Chemie International Edition, vol. 40, no. 18, pp. 3367-3369, 2001. DOI: https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A

G. T.-K. Fey, H.-Z. Yang, T. Prem Kumar, S. P. Naik, A. S. T. Chiang, D.-C. Lee, and J.-R. Lin, "A simple mechano-thermal coating process for improved lithium battery cathode materials," Journal of Power Sources, vol. 132, no. 1, pp. 172-180, 2004. DOI: https://doi.org/10.1016/j.jpowsour.2004.01.033

C. Chen, T. Tao, W. Qi, H. Zeng, Y. Wu, B. Liang, Y. Yao, S. Lu, and Y. Chen, "High-performance lithium ion batteries using

SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes," Journal of Alloys and Compounds, vol. 709, pp. 708-716, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.03.225

H.-J. Kweon, S. J. Kim, and D. G. Park, "Modification of LixNi1−yCoyO2 by applying a surface coating of MgO," Journal of Power Sources, vol. 88, no. 2, pp. 255-261, 2000. DOI: https://doi.org/10.1016/S0378-7753(00)00368-2

L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, "Surface modifications of electrode materials for lithium ion batteries," Solid State Sciences, vol. 8, p. 113, 2006. DOI: https://doi.org/10.1016/j.solidstatesciences.2005.10.019

X. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, and J. Li, "Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering," Journal of Power Sources, vol. 298, pp. 114-122, 2015. DOI: https://doi.org/10.1016/j.jpowsour.2015.08.031

S. Liu, Z. Wang, Y. Huang, Z. Ni, J. Bai, S. Kang, Y. Wang, and X. Li, "Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries," Journal of Alloys and Compounds, vol. 731, pp. 636-645, 2018. DOI: https://doi.org/10.1016/j.jallcom.2017.09.341

Y. Chung, S. -H. Ryu, J. -H. Ju, Y. -R. Bak, M. J. Hwang, K. -W. Kim, K. -K. Cho, and K. S. Ryu, "A surfactant-based method for carbon coating of LiNi0.8Co0.15Al0.05O2 cathode in Li ion batteries,", Bulletin of the Korean Chemical Society, vol. 31, no. 8, pp. 2304-2308, 2010. DOI: https://doi.org/10.5012/bkcs.2010.31.8.2304

Z. Liu, Z. Wang, T. Lu, P. Dai, P. Gao, and Y. Zhu, "Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating," Journal of Alloys and Compounds, vol. 763, pp. 701-710, 2018. DOI: https://doi.org/10.1016/j.jallcom.2018.06.016

K. Meng, Z. Wang, H. Guo, X. Li, and D. Wang, "Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3," Electrochimica Acta, vol. 211, pp. 822-831, 2016. DOI: https://doi.org/10.1016/j.electacta.2016.06.110

R. Qi, J.-L. Shi, X.-D. Zhang, X.-X. Zeng, Y.-X. Yin, J. Xu,

L. Chen, W.-G. Fu, Y.-G. Guo, and L.-J. Wan, "Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries," Science China Chemistry, vol. 60, no. 9, pp. 1230-1235, 2017. DOI: https://doi.org/10.1007/s11426-017-9050-6

J. S. Park, A. U. Mane, J. W. Elam, and J. R. Croy, "Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries," Chemistry of Materials, vol. 27, no. 6, pp. 1917-1920, 2015. DOI: https://doi.org/10.1021/acs.chemmater.5b00603

Y. Chung, and K. S. Ryu, "Surface coating and electro-chemical properties of LiNi0.8Co0.15Al0.05O2 polyaniline composites as an electrode for Li-ion batteries," Bulletin of the Korean Chemical Society, vol. 30, 2009. DOI: https://doi.org/10.5012/bkcs.2009.30.8.1733

C. -H. Lai, D. S. Ashby, T. C. Lin, J. Lau, A. Dawson, S. H. Tolbert, and B. S. Dunn, "Application of Poly(3-hexylthio phene-2,5-diyl) as a protective coating for high rate cathode materials," Chemistry of Materials, vol. 30, no. 8, pp. 2589-2599, 2018. DOI: https://doi.org/10.1021/acs.chemmater.7b05116

M. Wentker, M. Greenwood, and J. Leker, "A Bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials," Energies, vol. 12, p. 504, 2019. DOI: https://doi.org/10.3390/en12030504

K. Liu, Q. Zhang, S. Dai, W. Li, X. Liu, F. Ding, and J. Zhang, "Synergistic effect of F–doping and LiF coating on improving the high-voltage cycling stability and rate capacity of LiNi0.5 Co0.2Mn0.3O2 cathode materials for lithium-ion batteries," ACS Applied Materials & Interfaces, vol. 10, no. 40, pp. 34153-34162, 2018. DOI: https://doi.org/10.1021/acsami.8b10016

J. Jeyakumar, M. Seenivasan, Y. -S. Wu, L. -Y. Kuo, S. -H. Wu, J. -K. Chang, R. Jose, and C.- C. Yang, "Sn-doped/coated Ni-rich LiNi0.90Co0.04Mn0.03Al0.03O2 cathode materials for improved electrochemical performance of Li-Ion batteries," ACS Applied Energy Materials, vol. 7, no. 11, pp. 4919-4934, 2024. DOI: https://doi.org/10.1021/acsaem.4c00720

Downloads

Published

2025-03-18

How to Cite

[1]
P. KANTICHAIMONGKOL, T. WANOTAYAN, and J. QIN, “Review on surface engineering of NMC for high performance of lithium-ion batteries”, J Met Mater Miner, vol. 35, no. 2, p. e2338, Mar. 2025.

Issue

Section

Review Articles

Categories