Antireflective surface of nanostructures fabricated by CF<sub>4</sub> plasma etching

Authors

  • Witchaphol Somrang Department of physics, faculty of science, King Mongkut's University of Technology Thonburi (KMUTT). 126 Pracha Uthit Rd, Khwaeng Bang Mot, Khet Thung Khru, Krung Thep Maha Nakhon 10140
  • Somyod Denchitcharoen Department of physics, faculty of science, King Mongkut's University of Technology Thonburi (KMUTT). 126 Pracha Uthit Rd, Khwaeng Bang Mot, Khet Thung Khru, Krung Thep Maha Nakhon 10140
  • Pitak Eiamchai National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong 1,Klong Luang, Pathumthani 12120, Thailand
  • Mati Horprathum National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong 1,Klong Luang, Pathumthani 12120, Thailand
  • Chanunthorn Chananonnawathorn National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong 1,Klong Luang, Pathumthani 12120, Thailand

Keywords:

Antireflection, Dewetting, Plasma etching

Abstract

In this research, the nanostructures surface were fabricated by the CF4 plasma etching process on the SiO2-based substrates for antireflection applications. The nickel films were firstly deposited on the substrates by the sputtering system. The prepared Ni layers were then annealed at 500°C for 1 minute in order to promote dewetting process to be used as metal masks. During the etching process, CF4 etching condition was performed for 15-60 min to create the SiO2 nanopillars. After the etching process, the samples were immersed in nitric acid for 5 min to remove the nickel masks. The SiO2 nanopillars without Ni were investigated for physical morphologies and optical properties by the field-emission scanning electron microscopy (FESEM) and  UV-Vis-NIR spectroscopy respectively. The results showed that the etching conditions greatly affected the sizes and shapes of the nanostructures, as well as improved the antireflection properties of the SiO2 based materials.


Downloads

Download data is not yet available.

References

Raut, H. K., Ganesh Nair V.A. and Ramakrishna, A.S.S. (2011). AntiReflective Coatings: A Critical, In Depth Review. Energy Environ. Sci. 4: 3779- 3804.

Chattopadhyay, Huang S., Jen Y.F., Ganguly Y.J., A. Chen, K.H. Chen, L.C. (2010). AntiReflecting and Photonic Nanostructures. Mater. Sci.Eng. R-Rep. 69: 1-35.

Ye, Jiang X., Huang X., Geng J., Sun F., Zu L., Wu X. and Zheng W., W. (2015). Formation of Broadband Antireflective and Super-hydrophilic Subwavelength Structures on Fused Silica Using OneStep Self-Masking Reactive Ion Etching. Sci. Rep. 5: 13023.

Park, G.C., Song, Y.M., Ha, J-H. and Lee, Y.T. (2011). Broadband Antireflective Glasses with Subwavelength Structures Using Randomly Distributed Ag Nanoparticles. J. Nanosci. Nanotechnol. 11: 6152-6156.

Shang, P., Xiong, S.M., Deng, Q.L., Shi, L.F. and Zhang, M. (2014). Disordered Anti reflective Subwavelength Structures Using Ag nanoparticles on Fused Silica Windows. Appl. Opt. 53(29): 6789-6796.

Ye, X., Huang, J., Geng, F., Sun, L., Hongjie, L., Jiang, X., Wu, W., Zu, X. and Zheng, W. (2016). Broadband Antire flection Sub -wavelength Structures on Fused Silica Using Lower Temperatures Normal Atmosphere Thermal Dewetted Au Nanopatterns. IEEE Photon. Technol. Lett. 8(1): 2700110.

Xu, H., Lu, N., Qi, D., Hao, J., Gao, L., Z h a n g , B . a n d C h i , L . ( 2 0 0 8 ) . Biomimetic Antireflective Si Nanopillar Arrays. Small. 4(11): 1972-1975.

Wang, S., Yu, X.Z. and Fan H.T., (2007). Simple Lithographic Approach for Subwavelength Structure Antireflection. Appl. Phys. Lett. 91: 061105.

Lee, Y., Koh, K., Na, H., Kim, K., Kang J-J. and Kim, J. (2009). Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask. Nanoscale Res. Lett. 4(4): 364-370.

Tulli, D., Hart, S.D., Mazumder, P., Carrilero, A., Tian, L., Koch, K.W., Yongsunthon, R., Piech, G.A. and Pruneri, V. (2014). Monolithically Integrated Micro- and Nanostructured Glass Surface with Antiglare, Antireflection, and Super-hydrophobic Properties. Appl. Mater. Interfaces. 6(14): 11198-11203.

Lowdermilk, W.H., and Milam, D., (1980). Graded-Index Antireflection Surfaces for High-Power Laser Applications. Appl. Phys. Lett. 36: 891-893.

Hedayati, M.K. and Elbahri, M. (2016). Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A MiniReview. Materials 9(6): 497.

Leem, J.W., Yeh, Y. and Yu, J.S. (2012). Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Optics Express. 20(4): 4056

Lalanne, P. and Morris, G.M. (1996). Design, Fabrication and Characterization of Subwavelength Periodic Structures for Semiconductor Antireflection Coating in the Visible Domain. Proc. SPIE. 2776: 300-309.

Walheim, S., Schäffer, E., Mlynek, J. and Steiner, U. (1999). Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings. Science. 283: 520-522.

Wang, S., Yu, X.Z. and Fan, H.T. (2007). Simple Lithographic Approach for Sub-wavelength Structure Antireflection. Appl. Phys. Lett. 91(6): 061105.

Leem, J.W., Yu, J.S., Song, Y.M. and Lee Y.T. (2011). Antireflection Characteristics of Disordered GaAs Subwavelength Structures by Thermally Dewetted Au Nanoparticles. Sol. Energy Mater. Sol. Cells. 95(2): 669-676.

Vitanov, P., Harizanova, A., Ivanova, T. and Dikov, H. (2014). Low-Temperature Depositionof Ultrathin SiO2 Films on Si Substrates. J. Phys. Conf. Ser. 514: 012010.

Hiller, D., Zierold, R., Bachmann, J., Alexe, M., Yang, Y., Gerlach, J.W., Stesmans, A., Jivanescu, M., Müller, U., Vogt, J., Hilmer, H., Löper, P., Künle, M., Munnik, F., Nielsch, K. and Zacharias, M. (2010). Low Temperature Silicon Dioxide by Thermal Atomic Layer Deposition: Investigation of Material Properties. J. Appl. Phys. 107: 064314.

Schaepkens, M., Oehrleina, G.S. and Cook, J.M. (2000). Effect of Radio Frequency Bias Power on SiO2 Feature Etching in Inductively Coupled Fluorocarbon Plasmas. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process Meas. Phenom. 18: 848-855.

Son, J., Kundu, S., Verma, L.K., Sakhuja, M., Danner, A.J., Bhatia, C.S. and Yang, H. (2011). A Practical Superhydrohilic Self Cleaning and Antireflective Surface for Outdoor Photovoltaic Application. Sol.Energ. Mat. Sol. Cells. 98: 46-51.

Verma L.K., Sakhuja M., Son, J., Danner A.J., Yang H., Zeng H.C and Bhatia C.S. (2012). Self-Cleaning and Antireflective Packaging Glass for Solar Modules. Renew. Energy. 36: 2489-2493.

Thompson, C.V. (2012). Solid-State Dewetting of Thin Films. Annu. Rev. Mater. Res. 42: 399-434. 24. Kim, D., Giermann, A.L. and Thompson, C.V. (2009). Solid-State Dewetting of Patterned Thin Films. Appl. Phys. Lett. 95(25): 251903.

Park, G.C., Song, Y.M., Kang, E.K. and Lee, Y.T. (2012). Size-Dependent Optical Behavior of Disordered Nanostructures on Glass Substrates. Appl. Opt. 51(24): 5890- 5896.

Song, Y.M., Park, G.C., Kang, E.K., Yeo, C.L. and Lee, Y.T. (2013). Antireflective Grassy Surface on Glass Substrates with SelfMasked Dry Etching. Nanoscale Res. Lett. 8: 505

Cho, S.J., An, T., Kim, J.Y., Sung, J. and Lim, G. (2011). Super hydrophobic Nano-structured Silicon Surfaces with Controllable Broadband Reflectance. Chem. Commun. 47(21): 6108-6110.

Sakuma, S., Sugita, M. and Arai, F. (2013). Fabrication of Nanopillar Micropatterns by Hybrid Mask Lithography for SurfaceDirected Liquid Flow. Micromachines. 4(2): 232-242

Downloads

Published

2017-09-21

How to Cite

[1]
W. . Somrang, S. Denchitcharoen, P. Eiamchai, M. Horprathum, and C. . Chananonnawathorn, “Antireflective surface of nanostructures fabricated by CF<sub>4</sub> plasma etching”, J Met Mater Miner, vol. 27, no. 1, Sep. 2017.

Issue

Section

Original Research Articles

Most read articles by the same author(s)