NR/XSBR nanocomposites with carbon black and carbon nanotube prepared by latex compounding
คำสำคัญ:
Natural rubber, Carboxylated styrene butadiene rubber, Carbon black, Carbon nanotubeบทคัดย่อ
Two series of natural rubber/carboxylated styrene butadiene rubber (NR/XSBR) (80/20) nanocomposites containing different loadings of carbon black (CB) (3-9 phr) and carbon nanotube (CNT) (0.1-0.4 phr) have been prepared by a latex stage compounding method. Before mixing with NR/XSBR blended latex, CB and CNT were dispersed and stabilized in water by ball milling with the aid of surfactant. The obtained compounded latex was cast into sheet on a glass mold and thereafter cured in an oven at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break), dynamic mechanical properties (loss tangent, storage modulus) and thermal stabilities (degradation temperatures, % char) of the vulcanizates were evaluated. The results showed that the addition of either CB or CNT enhanced the tensile strength, modulus at 300% strain, storage modulus and thermal stability, but reduced the elongation at break of the NR/XSBR blend in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings. The CNT-filled nanocomposites provided a comparable tensile strength with that of the CB-filled nanocomposites but at about 25-fold lower loading. This reinforcing effect is attributed to the greater aspect ratio and specific surface area of CNT.Downloads
เอกสารอ้างอิง
Stephen, R., Raju, K.V.S.N., Rao, M., Francis, B., Joseph, K. and Thomas, S. (2007). Flow properties of unvulcanised natural rubber/carboxylated styrene butadiene rubber. J. Appl. Polym. Sci. 104 : 2528-2535.
Du, M., Guo, B., Lei, Y., Liu, M. and Jia, D. (2008). Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer. 49: 4871-4876.
De Sarkar, M., De, P. P. and Bhowmick, A.K. (2000). Diimide reduction of carboxylated styrene-butadiene rubber in latex stage. Polymer. 41 : 907-915.
Stephen, R., Raju, K.V.S.N., Nair, S.V., Vagghese, S., Oommen, Z. and Thomas, S. (2003). Mechanical and viscoelastic behavior of natural rubber and carboxylated styrene-butadiene rubber. J. Appl. Polym. Sci. 88 : 2639- 2648.
Stephen, R., Jose, S., Joseph, K., Thomas, S. and Oommen, Z. (2006). Thermal stability and ageing properties of sulphur and gamma radiation vulcanized natural rubber (NR) and carboxylated styrene-butadiene rubber (XSBR) latices and their blend. Polym. Degrad. Stab. 91 : 1717-1725.
Stephen, R., Thomas, S., Joseph, K. (2005). Gas permeation studies of natural rubber and carboxylated styrenebutadiene rubber latex membranes. J. Appl. Polym. Sci. 98 : 1125-1134
Popovic, R., Milenkovic, D., Popovic, R. and Plavsic, M. (2005). Properties of natural rubber/carboxylated styrenebutadiene latices blends. Sci. Tech. Rev. 3-4 : 66-69.
Stephen, R., Alex, R., Chrian, T., Vagghese, S., Joseph, K. and Thomas, S. (2006). Rheological behavior of nanocomposites of natural rubber and carboxylated styrene butadiene rubber latices and their blends. J. Appl. Polym. Sci. 101 : 2355-2362.
Shen, S., Yang, M., Ran, S., Xu, F. and Wang, Z. (2006). Preparation and properties of natural rubber/palygorskite composites by co-coagulating rubber latex and clay aqueous suspension. J. Polym. Res. 13 : 469-473.
Neogi, C. and Bhowmick, A.K. (1990). Threshold tensile strength and modulus of carbon-black-filled rubber vulcanizates. J. Mater. Sci. 25 : 3524-3530.
Cai, H.H., Li, S.D., Tian, G.R., Wang, H.B. and Wang, J.H. (2003). Reinforced of natural rubber latex film by ultrafine calcium carbonate. J. Appl. Polym. Sci. 87 : 982-985.
Peng, Z., Feng, C., Luo, Y., Li, Y. and Kong, L.X. (2010). Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon. 48 : 4497-4503.
Mukherjee, M., Bose, S., Nayak, G.C. and Das, C.K. (2010). A study on the properties of PC/LCP/MWCNT with and without compatibilizers. J. Polym. Res. 17 : 256-272.
Zhou, X., Zhu, Y., Liang, J. and Yu, S. (2010). New fabrication and mechanical properties of styrene-butadiene rubber/ carbon nanotubes nanocomposites. J. Mater. Sci. Technol. 26 : 1127-1132.
Nah, C., Lim, J.Y., Sengupta, R., Cho, B.H. and Gent, A.N. (2010). Slipping of carbon nanotubes in a rubber matrix. Polym. Int. 60 : 42-44.
Zhou, X.W., Zhu, Y.F. and Liang, J. (2007). Preparation and properties of powder styrene-butadiene rubber composites filled with carbon black and carbon nanotubes. Mater. Res. Bull. 42 : 456-464.
Yue, D., Liu, Y., Shen, Z. and Zhang, L. (2006). Study on preparation and properties of carbon nanotubes/rubber composites. J. Mater. Sci. 41 : 2541- 2544.
Atieh, M.A. (2011). Effect of functionalize carbon nanotubes with amine functional group on the mechanical and thermal properties of styrene butadiene rubber. J. Thermoplast. Compos. Mater. 24 : 613-624.
Anuar, J., Mariatti, M. and Ismail, H. (2007). Properties of aluminium and zinc-filled natural rubber composites. Polym. Plast. Technol. Eng. 46 : 667- 674.
Hakim, R.N. and Ismail, H. (2009). The comparison of organoclay with respect to silica on properties of natural rubber nanocomposites. J. Reinf. Plast. Compos. 28 : 1417-14331.
Shih, Y.F. and Huang, C.C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J. Polym. Res. 18 : 2335-2340.
Ramesan, M.T. (2004). Thermogravimetric analysis, flammability and oil resistance properties in natural rubber and dichlorocarbene modified styrene butadiene rubber blends. React. Funct. Polym. 59 : 267-274.
Bendjaouahdou, C. and Bensaad, S. (2011). Properties of polypropylene/natural rubber/organomontmorillonite nanocomposites prepared by melt blending. J. Vinyl. Add. Tech. 17 : 48-57.
Shih, Y. F. and Jeng, R. J. (2002). Carbon black containing IPNs based on unsaturated polyester/epoxy. I. Dynamic mechanical properties, thermal analysis, and morphology. J. Appl. Polym. Sci. (86) : 1904-1910.
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
การอนุญาต
ลิขสิทธิ์ (c) 2012 วารสารโลหะ, วัสดุ และแร่
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.