Sulfur-doped carbon dots derived from caffeine: A highly efficient photocatalyst for organic dye degradation
DOI:
https://doi.org/10.55713/jmmm.v35i4.2355Keywords:
Carbon dot, Caffeine, Solvothermal, Photocatalysts, Sulfur doped-carbon dotsAbstract
Sulfur-doped carbon dots (S-doped CDs) were synthesized via a solvothermal method using caffeine as a carbon precursor and sodium sulfide as a sulfur source. Characterization using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet -visible (UV-Vis) spectroscopy, and photoluminescence spectroscopy (PL) confirmed successful sulfur incorporation. TEM revealed a uniform size distribution and graphitic structures, while UV-Vis analysis showed a reduction in the bandgap from 3.29 eV to 3.10 eV, improving light absorption and charge carrier separation. The photocatalytic activity of S-doped CDs was evaluated for indigo carmine (IC) dye degradation under UV irradiation, where 2S-CDs exhibited the highest degradation efficiency (~90% within 240 min) due to enhanced charge carrier separation, defect-state-mediated electron transfer, and the generation of reactive oxygen species (ROS). Radical scavenger experiments confirmed that superoxide radicals (•O2‒), hydroxyl radicals (•OH), and photogenerated holes (h+) played key roles in dye degradation. This study demonstrates that S-doped CDs derived from caffeine are efficient and sustainable photocatalysts for wastewater treatment.
Downloads
References
M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, and A. El Harfi, "Textile finishing dyes and their impact on aquatic environs," Heliyon, vol. 5, p. e02711, 2019. DOI: https://doi.org/10.1016/j.heliyon.2019.e02711
M. Tripathi, S. Singh, S. Pathak, J. Kasaudhan, A. Mishra, S. Bala, D. Garg, R. Singh, P. Singh, P. K. Singh, A. K. Shukla, and N. Pathak, "Recent strategies for the remediation of textile dyes from wastewater: A systematic review, Toxics, vol. 11 p. 940, 2023. DOI: https://doi.org/10.3390/toxics11110940
O. F. Kayode, C. Luethi, and E. R. Rene, "Management recommendations for improving decentralized wastewater treatment by the food and beverage industries in nigeria," Environments, vol. 5, p. 41, 2018. DOI: https://doi.org/10.3390/environments5030041
Z. Eren, "Degradation of an azo dye with homogeneous and heterogeneous catalysts by sonophotolysis, CLEAN - Soil Air Water, vol. 40, pp. 1284-1289, 2012. DOI: https://doi.org/10.1002/clen.201100384
Y. Yao, H. Zhang, K. Hu, G. Nie, Y. Yang, Y. Wang, X. Duan, and S. Wang, "Carbon dots based photocatalysis for environmental applications," Journal of Environmental Chemical Engineering, vol. 10, p. 107336, 2022. DOI: https://doi.org/10.1016/j.jece.2022.107336
M. Sha, H. Anwar, F. Musthafa, H. Al-Lohedan, S. Alfarwati, J. Rajabathar, J. Alahmad, J.-J. Cabibihan, M. Karnan, and K. k. Sadasivuni, "Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO)," Scientific Reports, vol. 14, p. 3608, 2024. DOI: https://doi.org/10.1038/s41598-024-53626-8
Z. Peng, Y. Zhou, C. Ji, J. Pardo, K. J. Mintz, R. R. Pandey, C. C. Chusuei, R. M. Graham, G. Yan, and R. M. Leblanc, "Facile synthesis of “boron-doped” carbon dots and their application in visible-light-driven photocatalytic degradation of organic dyes," Nanomaterials, vol. 10, p. 1560, 2020. DOI: https://doi.org/10.3390/nano10081560
N. Ramesh, C. W. Lai, M. R. B. Johan, S. M. Mousavi, I. A. Badruddin, A. Kumar, G. Sharma, and F. Gapsari, "Progress in photocatalytic degradation of industrial organic dye by utilising the silver doped titanium dioxide nanocomposite," Heliyon, vol. 10, p. e40998, 2024. DOI: https://doi.org/10.1016/j.heliyon.2024.e40998
Y. Gong, B. Yu, W. Yang, and X. Zhang, Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages," Biosensors and Bioelectronics, vol. 79 pp. 822-828, 2016. DOI: https://doi.org/10.1016/j.bios.2016.01.022
Y. Wang, and A. Hu, "Carbon quantum dots: synthesis, properties and applications," Journal of Materials Chemistry C, vol. 2, pp. 6921-6939, 2014. DOI: https://doi.org/10.1039/C4TC00988F
Y. Pan, S. Sanati, R. Abazari, A. Jankowska, J. Goscianska, V. Srivastava, U. Lassi, J. Gao, "Vanadium- and manganese-based metal-organic frameworks for potential environmental and catalysis applications," Coordination Chemistry Reviews, vol. 522, p. 216231, 2025. DOI: https://doi.org/10.1016/j.ccr.2024.216231
V. L. John, Y. Nair, and T. P. Vinod, "Doping and surface modification of carbon quantum dots for enhanced functionalities and related applications," Particle & Particle Systems Characterization, vol. 38, p. 2100170, 2021. DOI: https://doi.org/10.1002/ppsc.202100170
Y. Zhu, X. Deng, J. Chen, Z. Hu, and F. Wu, "Coffee grounds-derived carbon quantum dots as peroxidase mimetics for colorimetric and fluorometric detection of ascorbic acid," Food Chemistry, vol. 429, p. 136957, 2023. DOI: https://doi.org/10.1016/j.foodchem.2023.136957
C. Michenzi, A. Proietti, M. Rossi, C. Espro, V. Bressi, F. Vetica, B. Simonis, and I. Chiarotto, "Carbon nanodots from orange peel waste as fluorescent probes for detecting nitrobenzene," RSC Sustainability, vol. 2, pp. 933-942, 2024. DOI: https://doi.org/10.1039/D3SU00469D
T. Selvarathinam, and R. S. Dhesingh, "Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp," Applied Surface Science, vol. 390, pp. 435-443, 2016. DOI: https://doi.org/10.1016/j.apsusc.2016.08.106
A. Saengsrichan, C. Saikate, P. Silasana, P. Khemthong, W. Wanmolee, J. Phanthasri, S. Youngjan, P. Posoknistakul, S. Ratchahat, N. Laosiripojana, K. C. W. Wu, and C. Sakdaronnarong, "The role of N and S doping on photoluminescent characteristics of carbon dots from palm bunches for fluorimetric sensing of Fe3+ Ion," International Journal of Molecular Sciences, vol. 23, p. 5001, 2022. DOI: https://doi.org/10.3390/ijms23095001
Y. Zhou, A. E. ElMetwally, J. Chen, W. Shi, E. K. Cilingir, B. Walters, K. J. Mintz, C. Martin, B. C. L. B. Ferreira, W. Zhang, S. D. Hettiarachchi, L. F. Serafim, P. L. Blackwelder, A. H. Wikramanayake, Z. Peng, R. M. Leblanc, Gel-like carbon dots: A high-performance future photocatalyst," Journal of Colloid and Interface Science, vol. 599, pp. 519-532, 2021. DOI: https://doi.org/10.1016/j.jcis.2021.04.121
M. Azami, and J. Wei, M. Valizadehderakhshan, A. Jayapalan, O. O. Ayodele, K. Nowlin, "Effect of doping heteroatoms on the optical behaviors and radical scavenging properties of carbon nanodots," The Journal of Physical Chemistry C, vol. 127, pp. 7360-7370, 2023. DOI: https://doi.org/10.1021/acs.jpcc.3c00953
S. Mohandoss, S. Ganesan, S. Palanisamy, S. You, K. Velsankar, S. Sudhahar, H.-M. Lo, and Y. R. Lee, "Nitrogen, sulfur, and phosphorus co-doped carbon dots-based ratiometric chemosensor for highly selective sequential detection of Al3+ and Fe3+ ions in logic gate, cell imaging, and real sample analysis," Chemosphere, vol. 313, p. 137444, 2023. DOI: https://doi.org/10.1016/j.chemosphere.2022.137444
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, "Highly Photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging," Angewandte Chemie International Edition, vol. 52, pp. 3953-3957, 2013. DOI: https://doi.org/10.1002/anie.201300519
C. Suwanchawalit, and S. Wongnawa, Influence of calcination on the microstructures and photocatalytic activity of potassium oxalate-doped TiO2 powders," Applied Catalysis A: General, vol. 338, pp. 87-99, 2008. DOI: https://doi.org/10.1016/j.apcata.2007.12.029
L. Ai, Y. Yang, B. Wang, J. Chang, Z. Tang, B. Yang, and S. Lu, Insights into photoluminescence mechanisms of carbon dots: advances and perspectives," Science Bulletin, vol. 66, pp. 839-856, 2021. DOI: https://doi.org/10.1016/j.scib.2020.12.015
H. Yi, J. Liu, J. Yao, R. Wang, W. Shi, and C. Lu, "Photo-luminescence mechanism of carbon dots: triggering multiple color emissions through controlling the degree of protonation," Molecules, vol. 27, p. 6517, 2022. DOI: https://doi.org/10.3390/molecules27196517
S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, "The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective," Nano Research, vol. 8, pp. 355-381, 2015. DOI: https://doi.org/10.1007/s12274-014-0644-3
H. Liu, Y. Zhang, and C. Huang, "Development of nitrogen and sulfur-doped carbon dots for cellular imaging," Journal of Pharmaceutical Analysis, vol. 9, pp. 127-132, 2019. DOI: https://doi.org/10.1016/j.jpha.2018.10.001
S. R. Kamali, C.-N. Chen, D. C. Agrawal, and T.-H. Wei, "Sulfur-doped carbon dots synthesis under microwave irradiation as turn-off fluorescent sensor for Cr(III)," Journal of Analytical Science and Technology, vol. 12, p. 48, 2021. DOI: https://doi.org/10.1186/s40543-021-00298-y
S. Lu, Z. Li, X. Fu, Z. Xie, and M. Zheng, "Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection," Dyes and Pigments, vol. 187 p. 109126, 2021. DOI: https://doi.org/10.1016/j.dyepig.2020.109126
H. Lu, C. Li, H. Wang, X. Wang, and S. Xu, "Biomass-derived sulfur, nitrogen co-doped carbon dots for colorimetric and fluorescent dual mode detection of silver(I) and cell imaging," ACS Omega, vol. 4, pp. 21500-21508, 2019. DOI: https://doi.org/10.1021/acsomega.9b03198
Y. Venkatesh, P. Naidu, R. Madaraboina, and D. Kundrapu, "Synthesis of multifunctional sulfur-nitrogen co-doped carbon quantum dots via facile one-pot microwave-assisted synthesis: Applications on antioxidant, antimicrobial activities, and Fe ion sensing," Journal of Nanoparticle Research, vol. 27 p. 62, 2025. DOI: https://doi.org/10.1007/s11051-025-06260-y
H. Ding, J.-S. Wei, and H.-M. Xiong, "Nitrogen and sulfur co-doped carbon dots with strong blue luminescence," Nanoscale, vol. 6, pp. 13817-13823, 2014. DOI: https://doi.org/10.1039/C4NR04267K
M. R. Hasan, N. Saha, T. Quaid, and M. T. Reza, "Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors," Energies, 2021. DOI: https://doi.org/10.3390/en14040986
X. Miao, X. Yan, D. Qu, D. Li, F.F. Tao, and Z. Sun, "Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics," ACS Applied Materials & Interfaces, vol. 9, pp. 18549-18556, 2017. DOI: https://doi.org/10.1021/acsami.7b04514
Y. Chen, Y. Wu, B. Weng, B. Wang, and C. Li, "Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging," Sensors and Actuators B: Chemical, vol. 223, pp. 689-696, 2016. DOI: https://doi.org/10.1016/j.snb.2015.09.081
F. Wu, M. Yang, H. Zhang, S. Zhu, X. Zhu, and K. Wang, "Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion," Optical Materials, vol. 77, pp. 258-263, 2018. DOI: https://doi.org/10.1016/j.optmat.2018.01.048
J. Zeng, L. Liao, X. Lin, G. Liu, X. Luo, M. Luo, and F. Wu, "Red-emissive sulfur-doped carbon dots for selective and sensitive detection of mercury (II) ion and glutathione," International Journal of Molecular Sciences, vol. 23, p. 9213, 2022. DOI: https://doi.org/10.3390/ijms23169213
A. Hemmati, H. Emadi, and S. R. Nabavi, "Green synthesis of sulfur- and nitrogen-doped carbon quantum dots for determination of L-DOPA using fluorescence spectroscopy and a smartphone-based fluorimeter, ACS Omega, vol. 8, pp. 20987-20999, 2023. DOI: https://doi.org/10.1021/acsomega.3c01795
A. Pal, M. P. Sk, and A. Chattopadhyay, "Recent advances in crystalline carbon dots for superior application potential," Materials Advances, vol. 1, pp. 525-553, 2020. DOI: https://doi.org/10.1039/D0MA00108B
Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Chen, Y. Liu, and H. Zhou, "Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection," Journal of Materials Chemistry A, vol. 3, pp. 542-546, 2015. DOI: https://doi.org/10.1039/C4TA05483K
X. Li, S. P. Lau, L. Tang, R. Ji, and P. Yang, "Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots," Nanoscale, vol. 6 pp. 5323-5328, 2014. DOI: https://doi.org/10.1039/C4NR00693C
N. Sahiner, S. S. Suner, M. Sahiner, and C. Silan, "Nitrogen and sulfur doped carbon dots from amino acids for potential bio-medical applications," Journal of Fluorescence, vol. 29, pp. 1191-1200, 2019. DOI: https://doi.org/10.1007/s10895-019-02431-y
M. Xue, L. Zhang, Z. Zhan, M. Zou, Y. Huang, and S. Zhao, "Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging," Talanta, vol. 150 pp. 324-330, 2016. DOI: https://doi.org/10.1016/j.talanta.2015.12.024
Y.-C. Lu, J. Chen, A.-J. Wang, N. Bao, J.-J. Feng, W. Wang, and L. Shao, "Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(II) detection and bioimaging," Journal of Materials Chemistry C, vol. 3, pp. 73-78, 2015. DOI: https://doi.org/10.1039/C4TC02111H
J. Yang, W. Chen, X. Liu, Y. Zhang, and Y. Bai, "Hydrothermal synthesis and photoluminescent mechanistic investigation of highly fluorescent nitrogen doped carbon dots from amino acids," Materials Research Bulletin, vol. 89, pp. 26-32, 2017. DOI: https://doi.org/10.1016/j.materresbull.2017.01.013
W. Liu, Y. Han, M. Liu, L. Chen, and J. Xu, "Effect of defects on optical and electronic properties of graphene quantum dots: A density functional theory study," RSC Advances, vol. 13, pp. 16232-16240, 2023. DOI: https://doi.org/10.1039/D3RA02564K
G. Magdy, S. Ebrahim, F. Belal, R. El-Domany, and A. A.-M. Ali, "Sulfur and nitrogen co‑doped carbon quantum dots as fluorescent probes for the determination of some pharmaceutically‑ important nitro compounds," Scientific Reports, vol. 13, p. 5502, 2023. DOI: https://doi.org/10.1038/s41598-023-32494-8
J. Jia, Y. Sun, Y. Zhang, Q. Liu, J. Cao, G. Huang, B. Xing, C. Zhang, L. Zhang, and Y. Cao, "Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties," Frontiers in Chemistry, vol. 8, p. 123, 2020. DOI: https://doi.org/10.3389/fchem.2020.00123
S. Kadian, G. Manik, A. Kalkal, M. Singh, and R. P. Chauhan, "Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: An experimental and theoretical investigation," Nanotechnology, vol. 30, p. 435704, 2019. DOI: https://doi.org/10.1088/1361-6528/ab3566
Y. Wang, S.-H. Kim, and L. Feng, "Highly luminescent N, S- co-doped carbon dots and their direct use as mercury(II) sensor, Analytica Chimica Acta, vol. 890, pp. 134-142, 2015. DOI: https://doi.org/10.1016/j.aca.2015.07.051
D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, and J.-J. Zhu, "Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties," Carbon, vol. 64, pp. 424-434, 2013. DOI: https://doi.org/10.1016/j.carbon.2013.07.095
N. Khadhri, M. El Khames Saad, M. ben Mosbah, and Y. Moussaoui, "Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole," Journal of Environmental Chemical Engineering, vol. 7 p. 102775, 2019. DOI: https://doi.org/10.1016/j.jece.2018.11.020
Z . Zhu, P. Yang, X. Li, M. Luo, W. Zhang, M. Chen, and X. Zhou, "Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 227, p. 117659, 2020. DOI: https://doi.org/10.1016/j.saa.2019.117659
G. Huang, Y. Lin, L. Zhang, Z. Yan, Y. Wang, and Y. Liu, "Synthesis of sulfur-selenium doped carbon quantum dots for biological imaging and scavenging reactive oxygen species, Scientific Reports, vol. 9, p. 19651, 2019. DOI: https://doi.org/10.1038/s41598-019-55996-w
S. Sun, Q. Guan, Y. Liu, B. Wei, Y. Yang, and Z. Yu, "Highly luminescence manganese doped carbon dots," Chinese Chemical Letters, vol. 30, pp. 1051-1054, 2019. DOI: https://doi.org/10.1016/j.cclet.2019.01.014
J. P. Paraknowitsch, Y. Zhang, B. Wienert, and A. "Thomas, nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives," Chemical Communications, vol. 49, pp. 1208-1210, 2013. DOI: https://doi.org/10.1039/c2cc37398j
T. Zhang, Q. Ji, J. Song, H. Li, X. Wang, H. Shi, M. Niu, T. Chu, F. Zhang, and Y. Guo, "Preparation of nitrogen and sulfur co-doped fluorescent carbon dots from cellulose nanocrystals as
a sensor for the detection of rutin," Molecules, vol. 27, p. 8021, 2022. DOI: https://doi.org/10.3390/molecules27228021
K. Nguyen, I.-A. Baragau, R. Gromicova, A. Nicolaev, S. Thomson, A. Rennie, N. Power, M. Sajjad, and S. Kellici, "Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening," Scientific Reports, vol. 12, p. 13806, 2022. DOI: https://doi.org/10.1038/s41598-022-16893-x
B. Wang, Y. Wang, Y. Zhou, F. Qi, Q. Ding, J. Li, X. OuYang, and L. Liu, "Multi-walled carbon nanotube-reinforced boron carbide matrix composites fabricated via ultra-high-pressure sintering," Journal of Materials Science, vol. 54, pp. 11084-11095, 2019. DOI: https://doi.org/10.1007/s10853-019-03677-4
R. S. Vartapetyan, A. M. Voloshchuk, and E. B. Shumilina, "The critical size of clusters of water molecules on a carbon surface," Russian Chemical Bulletin, vol. 42, pp. 46-48, 1993. DOI: https://doi.org/10.1007/BF00699971
H. Hantsche, "High resolution XPS of organic polymers, the scienta ESCA300 database," Journal of Chemical Education, vol. 70, no. 1, 1993. DOI: https://doi.org/10.1021/ed070pA25.5
X. Chen, and J. Che, "Nitrogen and sulfur co-doped carbon dots derived from granatums and ammonium persulfate to detect tetracyclines in milk," Food Chemistry Advances, vol. 1 p. 100112, 2022. DOI: https://doi.org/10.1016/j.focha.2022.100112
M. Hamid, S. Humaidi, H. Wijoyo, I. Isnaeni, I. R. Saragi, C. Simanjuntak, N. H. M. Kaus, M. M. A. Kechik, A. Nurbillah, Y. Yaakob, and T. I. Nasution, "Solvothermal synthesized N–S doped carbon dots derived from cavendish banana peel (Musa paradisiaca) for detection of Fe(III) and Pb(II)," Chemical and Environmental Engineering, vol. 10, p. 100832, 2024. DOI: https://doi.org/10.1016/j.cscee.2024.100832
Y. Wu, Y. Li, J. Gao, and Q. Zhang, "Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis," SusMat, vol. 1, pp. 66-87, 2021. DOI: https://doi.org/10.1002/sus2.3
S. Jamil, R. Afzal, S. R. Khan, M. Shabbir, N. Alhokbany, S. Li, and M. R. S. A. Janjua, "Photocatalytic degradation of indigo carmine dye by hydrothermally synthesized graphene nanodots (GNDs): Investigation of kinetics and thermodynamics," RSC Advances, vol. 14, pp. 23973-23986, 2024. DOI: https://doi.org/10.1039/D4RA02476A
Y. Zhou, E. M. Zahran, B. A. Quiroga, J. Perez, K. J. Mintz, Z. Peng, P. Y. Liyanage, R. R. Pandey, C. C. Chusuei, and R. M. Leblanc, "Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence," Applied Catalysis B: Environmental, vol. 248, pp. 157-166, 2019. DOI: https://doi.org/10.1016/j.apcatb.2019.02.019
P. Hao, R. Shi, X. Wang, J. Zhang, B. Li, J. Wang, B. Liu, Y. Liu, X. Qiao, and Z. Wang, "Efficient tetracycline degradation using carbon quantum dot modified TiO2@LaFeO3 hollow core shell photocatalysts," Scientific Reports, vol. 14, p. 27057, 2024. DOI: https://doi.org/10.1038/s41598-024-78782-9
M. A. Adib, F. Sharmin, and M. A. Basith, "Tuning the morphology, stability and optical properties of CsSnBr3 nano-crystals through bismuth doping for visible-light-driven applications," Nanoscale Advances, vol. 5, pp. 6194-6209, 2023. DOI: https://doi.org/10.1039/D3NA00309D
Mulliken Electronegativity, 1966, Nobel Prize in Chemistry pp. 1896–1986,
P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, and W. Shangguan, "TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water," Fuel and Energy Abstracts, vol. 37, pp. 2224-2230, 2012. DOI: https://doi.org/10.1016/j.ijhydene.2011.11.004
V. Takhar, and S. Singh, "Nanomaterials ROS: A comprehensive review for environmental applications," Environmental Science: Nano, vol. 12, pp. 2516-2550, 2025. DOI: https://doi.org/10.1039/D5EN00049A
S. San Martín, M.J. Rivero, and I. Ortiz, "Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production," Catalysts, vol. 10, p. 901, 2020. DOI: https://doi.org/10.3390/catal10080901
											Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
 
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
 
						
			
		
			
			
				



