Nanostructure of TiO\(_{2}\) and WO\(_{3}\) multilayer films deposited on ITO glass for electrochromic enhanced photocatalytic activity
DOI:
https://doi.org/10.55713/jmmm.v34i4.1964Keywords:
oblique angle deposition, TiO2, WO3, electrochromic, photocatalyticAbstract
The photocatalytic activity (PA) by electrochromic (EC) enhancement of single and multilayer films of TiO2, WO3, TiO2/WO3, and WO3/TiO2 was investigated. All films were deposited from metal on an ITO glass substrate using direct current (DC) magnetron sputtering via an oblique angle deposition (OAD) technique at 85°. Subsequently, a thermal oxidation (TO) process at 500℃ was applied for the samples to form metal oxide films. The morphology, elemental composition, crystal structure, and optical properties were studied by using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and UV-vis spectroscopy, respectively. The photocatalytic properties were investigated by showing the degradation rate of methylene blue (MB) solution as an organic pollutant that was examined under ultraviolet irradiation of 300 µW∙cm‒2. The film samples were investigated by comparing the pre-color and colored states that were achieved through the EC process. The EC properties of WO3 led to increased charge insertion on the film surface. This observation was further supported by cyclic voltammetry (CV) testing, which revealed a higher current density for the thin film samples. The photodegradation results showed that the samples in the colored state exhibited a significantly higher degradation rate of MB compared to the pre-color state.
Downloads
References
N. T. Padmanabhan, N. Thomas, J. Louis, D. T. Mathew, P. Ganguly, H. John, S. C. Pillai, "Graphene coupled TiO2 photo-catalysts for environmental applications: A review," Chemosphere, vol. 271, p. 129506, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2020.129506
F. Riboni, L. G. Bettini, D. W. Bahnemann, and E. Selli, "WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the PA of mixed oxides," Catalysis Today, vol. 209, pp. 28-34, 2013. DOI: https://doi.org/10.1016/j.cattod.2013.01.008
A. Karuppasamy, "Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering," Applied Surface Science, vol. 359, pp. 841-846, 2015. DOI: https://doi.org/10.1016/j.apsusc.2015.10.020
A. Hauch, A. Georg, U. O. Krašovec, and B. Orel, "Comparison of PhotoEC devices with different layer configurations," Journal of The Electrochemical Society, vol. 149, no. 9, pp. 159, 2002. DOI: https://doi.org/10.1149/1.1496487
W. Smith, A. Wolcott, R. C. Fitzmorris, J. Z. Zhang, and Y. Zhao, "Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting," Journal of Materials Chemistry, vol. 21, no. 29, p. 10792, 2011. DOI: https://doi.org/10.1039/c1jm11629k
Z. Dohčević-Mitrović, S. Stojadinović, and L. Lozzi, "WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties," Materials Research Bulletin, vol. 83, pp. 217-224, 2016. DOI: https://doi.org/10.1016/j.materresbull.2016.06.011
N. Foad, and F. A. Bakar, "Synthesis of TiO2 photocatalyst with tunable optical properties and exposed facet for textile wastewater treatment," Results in Optics, vol. 13, pp. 100545-100545, 2023. DOI: https://doi.org/10.1016/j.rio.2023.100545
W. Promsuwan, P. Sujaridworakun, and W. Reainthippayasakul, "Synthesis of zinc oxide photocatalysts from zinc-dust waste for organic dye degradation," Journal of metals, materials and minerals, vol. 33, no. 2, pp. 58-64, 2023. DOI: https://doi.org/10.55713/jmmm.v33i2.1608
C. Tangwongputti, P. Reubroycharoen, and P. Sujaridworakun, "Facile synthesis of heterostructured g-C3N4/Ag -TiO2 photo-catalysts with enhanced visible-light photocatalytic performance," Journal of metals, materials and minerals, vol. 32, no. 1, pp. 48-54, 2022. DOI: https://doi.org/10.55713/jmmm.v32i1.1246
Y. Yao, D. Sang, L. Zou, Q. Wang, and C. Liu., "A review on the properties and applications of WO3 nanostructure-based optical and electronic devices," , vol 11 no. 8, p. 2136, 2021. DOI: https://doi.org/10.3390/nano11082136
S. Park, Y. Quan, S. Kim, H. Kim, D. Chun, C. S. Lee, M. Taya, W. Chu, and S. Ahn, "A review on fabrication processes for EC devices," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 4, pp. 397-421, 2016. DOI: https://doi.org/10.1007/s40684-016-0049-8
Y. Ren, X. Zhou, Q. Wang, and G. Zhao, "Combined redox and plasmonic EC effects in WO3/ITO double-layer films," Journal of Sol-Gel Science and Technology, vol. 85, no. 3, pp. 732-742, 2018. DOI: https://doi.org/10.1007/s10971-018-4594-1
K. M. Karuppasamy, and A. Subrahmanyam, "The EC and photo- catalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films," Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1322-1326, 2008. DOI: https://doi.org/10.1016/j.solmat.2008.05.004
H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, "Nanostructured tungsten oxide-properties, synthesis, and applications," Advanced Functional Materials, vol. 21, no. 12, pp. 2175-2196, 2011. DOI: https://doi.org/10.1002/adfm.201002477
W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, and G. Zheng, "WO3 nanoflakes for enhanced photoelectrochemical conversion," ACS Nano, vol. 8, no. 11, pp. 11770-11777, 2014. DOI: https://doi.org/10.1021/nn5053684
J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, and J. Gong, "Tungsten oxide single crystal nanosheets for enhanced multi-channel solar light harvesting," Advanced Materials, vol. 27, no. 9, pp. 1580-1586, 2015. DOI: https://doi.org/10.1002/adma.201404792
C. Salawan, M. Aiempanakit, K. Aiempanakit, C. Chananonnawathorn, P. Eiamchai, and M. Horprathum, "Effects of oblique angle deposition on optical and morphological properties of WO3 nanorod films for EC application," Materials Today: Proceedings, vol. 4, no. 5, pp. 6423-6429, 2017. DOI: https://doi.org/10.1016/j.matpr.2017.06.148
W. A. Smith, Z. Y. Zhang, and Y. Zhao, "Structural and optical characterization of WO3 nanorods/films prepared by oblique angle deposition," Journal of vacuum science & technology, vol. 25, no. 6, pp. 1875-1881, 2007. DOI: https://doi.org/10.1116/1.2799968
Y. Liang, P. Wang, Y. Wang, Y. Dai, Z. Hu, D. E. Tranca, R. Hristu, S.G. Stanciu, A. Toma, G. A. Stanciu, X. Wang, and E. Fu, "Growth mechanisms and the effects of deposition parameters on the structure and properties of high entropy film by magnetron sputtering," Materials, vol. 12, no. 18, pp. 3008-3008, 2019. DOI: https://doi.org/10.3390/ma12183008
S. R. Damkale, S. S. Arbuj, G. Umarji, S. Rane, and B. B. Kale, "Highly crystalline anatase TiO2 nanocuboids as an efficient photocatalyst for hydrogen generation," RSC Advances, vol. 11, no. 13, pp. 7587-7599, 2021. DOI: https://doi.org/10.1039/D0RA10750F
J. Yang, X. Zhang,H. Liu,C. Wang, S. Liu,P. Sun, L. Wang, and Y. Liu, "Heterostructured TiO2/WO3 porous microspheres: Preparation, characterization and photocatalytic properties," Catalysis Today, vol. 201, pp. 195-202, 2013. DOI: https://doi.org/10.1016/j.cattod.2012.03.008
S. Higashimoto, T. Shishido, Y. Ohno, M. Azuma, M. Takahashi, and M. Anpo, "Photocharge-discharge behaviors of hybrid WO3/TiO2 Film Electrodes," Journal of The Electrochemical Society, vol. 154, no. 2, p. 48, 2007. DOI: https://doi.org/10.1149/1.2404777
S. Bogati, A. Georg, and W. Graf, "Photo EC devices based on sputtered WO3 and TiO2 films," Solar Energy Materials and Solar Cells, vol. 163, pp. 170-177, 2017. DOI: https://doi.org/10.1016/j.solmat.2017.01.016
Z. Xia, H. Wang, Y. Su, P. Tang, M. Dai, H. Lin, Z. Zhang, and Q. Shi, "Enhanced EC properties by improvement of crystallinity for sputtered WO3 film," Coatings, vol. 10, no. 6, pp. 577-577, 2020. DOI: https://doi.org/10.3390/coatings10060577
M. H. Kim, H. W. Choi, and K. H. Kim, "Thickness dependence of WO3-x thin films for EC device application," Molecular Crystals and Liquid Crystals, vol. 598, no. 1, pp. 54-61, 2014. DOI: https://doi.org/10.1080/15421406.2014.933298
G. F. Cai, D. Zhou, Q. Q. Xiong, J. H. Zhang, X. L. Wang, C. D. Gu, and J. P. Tu, "Efficient EC materials based on TiO2 @WO3 core/shell nanorod arrays," Solar Energy Materials and Solar Cells, vol. 117, pp. 231-238, 2013. DOI: https://doi.org/10.1016/j.solmat.2013.05.049
M. A. Arvizu, C. A. Triana, B. Stefanov, C. G. Granqvist, and G. A. Niklasson, "Electrochromism in sputter-deposited W–Ti oxide films: Durability enhancement due to Ti," Solar Energy Materials and Solar Cells, vol. 125, pp. 184-189, 2014. DOI: https://doi.org/10.1016/j.solmat.2014.02.037
A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, "Perspectives on oblique angle deposition of thin films: From fundamentals to devices," Progress in Materials Science, vol. 76, pp. 59-153, 2016. DOI: https://doi.org/10.1016/j.pmatsci.2015.06.003
C. Aiempanakit, A. Chanachai, N. Kanchai, M. Aiempanaki, and K. Aiempanakit, "EC property of tungsten trioxide films prepared by DC magnetron sputtering with oblique angle deposition and thermal oxidation," Journal of metals, materials and minerals, vol. 31, no. 2, pp. 123-128, 2021. DOI: https://doi.org/10.55713/jmmm.v31i2.1084
C. Aiempanaki and K. Aiempanakit, "Structural development and phase transformation behavior of thermally-oxidization Ti by sputtering power and OAD technique," Materials Chemistry and Physics, vol. 280, p. 125814, 2022. DOI: https://doi.org/10.1016/j.matchemphys.2022.125814
W. A. Smith, and Y. Zhao, "Enhanced PA by aligned WO3/TiO2 two-layer nanorod arrays," The Journal of Physical Chemistry C, vol. 112, no. 49, pp. 19635-19641, 2008. DOI: https://doi.org/10.1021/jp807703d
D. Nagy, T. Firkala, E. Drotár, Á. Szegedi, K. László, and I. M. Szilágyi, “Photocatalytic WO3/TiO2 nanowires: WO3 polymorphs influencing the atomic layer deposition of TiO2,” RSC Advances, vol. 6, no. 98, pp. 95369-95377, 2016. DOI: https://doi.org/10.1039/C6RA18899K
K. Saitow, Y. Wang, and S. Takahashi, "Mechano-synthesized orange TiO2 shows significant photocatalysis under visible light," Scientific Reports, vol. 8, no. 1, 2018. DOI: https://doi.org/10.1038/s41598-018-33772-6
L. Zhang, H. Wang, J. Liu, Q. Zhang, and H. Yan, "Mesoporous WO3/TiO2 nanocomposites photocatalyst for rapid degradation of methylene blue in aqueous medium," International Journal of Engineering, vol. 32, no. 10, 2019. DOI: https://doi.org/10.5829/ije.2019.32.10a.02
C. P. Sajan, A. Naik, and H. N. Girish, "Hydrothermal fabrication of WO3-modified TiO2 crystals and their efficiency in photo-catalytic degradation of FCF," International Journal of Environmental Science and Technology, vol. 14, no. 7, pp. 1513-1524, 2017. DOI: https://doi.org/10.1007/s13762-016-1239-1
E. Vasilaki, D. Vernardou, G. Kenanakis, M. Vamvakaki, and N. Katsarakis, "TiO2/WO3 photoactive bilayers in the UV-Vis light region," Applied Physics A, vol. 123, no. 4, 2017. DOI: https://doi.org/10.1007/s00339-017-0837-1
K. Tennakone, O.A. Ileperuma, J. Bandara, and W.C.B. Kiridena, "TiO2 and WO3 semiconductor particles in contact: photo-chemical reduction of WO3 to the non-stoichiometric blue form," Semiconductor Science and Technology, vol. 7, no. 3, pp. 423-424, 1992. DOI: https://doi.org/10.1088/0268-1242/7/3/025
C. Khare, K. Sliozberg, R. Meyer, A. Savan, W. Schuhmann, and A. Ludwig, "Layered WO3/TiO2 nanostructures with enhanced photocurrent densities," International Journal of Hydrogen Energy, vol. 38, no. 36, pp. 15954-15964, 2013. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.142
Y. C. Chen, T. Y. Lin, T. L. Chen, Y. D. Li, and K. W. Weng, "EC properties of tungsten-titanium oxide films," Journal of Nano
science and Nanotechnology, vol. 12, no. 2, pp. 1296-1300, 2012. DOI: https://doi.org/10.1166/jnn.2012.4629
M. V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, and E. Selli, "PA of TiO2-WO3 mixed oxides in relation to electron transfer efficiency," Applied Catalysis B: Environmental, vol. 186, pp. 157-165, 2016. DOI: https://doi.org/10.1016/j.apcatb.2016.01.004
C. Aiempanakit, R. Momkhunthod, and K. Aiempanakit, “Electrochromism in nanoporous tungsten trioxide films prepared through anodization and thermal oxidation,” Integrated Ferroelectrics, vol. 222:1, pp. 84-92, 2021. DOI: https://doi.org/10.1080/10584587.2021.1961518
I. Alves, G. Byzynski, M. Dawson, and C. Ribeiro, "Charge transfer mechanism of WO3/TiO2 heterostructure for photo-electronchemical water splitting," Journal of Photochemistry and Photobiology A: Chemistry, vol. 339, pp. 95-102, 2017. DOI: https://doi.org/10.1016/j.jphotochem.2017.02.024
L. Cao, J. Yuan, M. Chen, and W. Shangguan, "Photocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique," Journal of Environmental Sciences, vol. 22, no. 3, pp. 454-459, 2010. DOI: https://doi.org/10.1016/S1001-0742(09)60129-7
L. Zhang, J. Guo, B. Hao, and H. Ma, "WO3/TiO2 heterojunction photocatalyst prepared by reactive magnetron sputtering for Rhodamine B dye degradation," Optical Materials, vol. 133, p. 113035, 2022. DOI: https://doi.org/10.1016/j.optmat.2022.113035
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Metals, Materials and Minerals
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.