Development of poly(lactic acid)/ethylene-propylene-diene monomer/cellulose composites using cellulose extracted from hemp biomass for plastic packaging applications
DOI:
https://doi.org/10.55713/jmmm.v36i1.2332คำสำคัญ:
Poly(lactic acid), Ethylene-propylene-diene monomer (EPDM), Hemp biomass, Micro-cellulose, Polymer compositesบทคัดย่อ
Poly(lactic acid)/ethylene-propylene-diene monomer (EPDM)/cellulose composites using cellulose derived from hemp biomass (CHB) were investigated in this research. Morphology, chemical structures, functional groups, and crystallinity of CHB were characterized, observing a size of 135 ± 32 μm from SEM images with high purity and crystallinity from FT-IR and XRD spectroscopy. The optimized CHB was incorporated at 1 phr, 3 phr, and 5 phr into PLA/EPDM blends at 90/10 w/w. The polymer composites were prepared using an internal mixer, and samples were produced by compression molding for mechanical and thermal testing. The results indicated that the EPDM phase dispersed as droplets in the PLA matrix, resulting in more break elongation in the polymer blends from 3% to 9%. The CHB was not homogeneously distributed, with prominent particles observed in the matrix. Nevertheless, CHB enhanced Young's modulus, tensile strength, and stress at break, particularly in the 1 phr composites, which was identified as the optimal condition. The stress-strain curve shows the rigid shape of the neat material transforming to yield a point. For transparency, it shows that the EPDM and CHB mix resists UV and the visible range. Ultimately, the PLA/EPDM/CHB composites demonstrated improved properties suitable for plastic packaging applications.
Downloads
เอกสารอ้างอิง
W. L. Filho, U. Saari, M. Fedoruk, A. Iital, H. Moora, M. Kloga, and V. Voronova, "An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe," Journal of cleaner production, vol. 214, pp. 550-558, 2019. DOI: https://doi.org/10.1016/j.jclepro.2018.12.256
P. Europe, "Plastics—The Facts 2016," An analysis of European latest plastics production, demand and waste data, 2016.
S. Buaruk, P. Somnuake, S. Gulyanon, S. Deepaisarn, S. Laitrakun, and P. Opaprakasit, "Membrane filter removal in FTIR spectra through dictionary learning for exploring explainable environmental microplastic analysis," Scientific Reports, vol. 14, no. 1, p. 20297, 2024. DOI: https://doi.org/10.1038/s41598-024-70407-5
S. Ebnesajjad, Fluoroplastics, volume 2: Melt processible fluoropolymers-the definitive user's guide and data book. William Andrew, 2015. DOI: https://doi.org/10.1016/B978-1-4557-3197-8.00009-2
L. Cabernard, L. Roscher, C. Lorenz, G. Gerdts, and S. Primpke, "Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment," Environmental science & technology, vol. 52, no. 22, pp. 13279-13288, 2018. DOI: https://doi.org/10.1021/acs.est.8b03438
P. Somnuake, P. Opaprakasit, and A. Petchsuk, "Electrospun nanofibers of polylactide (PLA) stereocomplex with super-hydrophobic surfaces for potential use in facial mask and biomedical applications," Thammasat University, 2021.
A. Awal, M. Rana, and M. Sain, "Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites," Mechanics of Materials, vol. 80, pp. 87-95, 2015. DOI: https://doi.org/10.1016/j.mechmat.2014.09.009
T. C. Mokhena, J. S. Sefadi, E. R. Sadiku, M. J. John, M. J. Mochane, and A. Mtibe, "Thermoplastic processing of pla/ cellulose nanomaterials composites," Polymers (Basel), vol. 10, no. 12, 2018. DOI: https://doi.org/10.3390/polym10121363
J. Ren, "Processing of PLA," in Biodegradable Poly(Lactic Acid): Synthesis, Modification, Processing and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 142-207. DOI: https://doi.org/10.1007/978-3-642-17596-1_5
S. Su, R. Kopitzky, S. Tolga, and S. Kabasci, "Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review," Polymers (Basel), vol. 11, no. 7, 2019. DOI: https://doi.org/10.3390/polym11071193
X. Pang, X. Zhuang, Z. Tang, and X. Chen, "Polylactic acid (PLA): Research, development and industrialization," Biotechnology Journal, vol. 5, no. 11, pp. 1125-1136, 2010. DOI: https://doi.org/10.1002/biot.201000135
S. Li, S. Zhao, Y. Hou, G. Chen, Y. Chen, and Z. Zhang, "Polylactic acid (PLA) modified by polyethylene glycol (PEG) for the immobilization of lipase," Applied biochemistry and biotechnology, vol. 190, pp. 982-996, 2020. DOI: https://doi.org/10.1007/s12010-019-03134-7
H. Tsuji, "Poly(lactic acid) stereocomplexes: A decade of progress," Advanced Drug Delivery Reviews, vol. 107, pp. 97-135, 2016. DOI: https://doi.org/10.1016/j.addr.2016.04.017
K. Madhavan Nampoothiri, N. R. Nair, and R. P. John, "An overview of the recent developments in polylactide (PLA) research," Bioresour Technol, vol. 101, no. 22, pp. 8493-501, 2010. DOI: https://doi.org/10.1016/j.biortech.2010.05.092
I. Reinholds, V. Kalkis, J. Zicans, R. Merijs Meri, and A. Grigalovica, "Thermal and mechanical properties of unvulcanized polypropylene blends with different elastomers: ethylene-propylene-diene terpolymer, nitrile-butadiene copolymer and chlorinated polyethylene," Key Engineering Materials, vol. 559, pp. 93-98, 2013. DOI: https://doi.org/10.4028/www.scientific.net/KEM.559.93
P. Sukpuang, M. Opaprakasit, A. Petchsuk, and P. Opaprakasit, "Toughness enhancement of polylactic acid by employing glycolyzed polylactic acid-cured epoxidized natural rubber," in Advanced Materials Research, vol. 1025, pp. 580-584, 2014. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.580
S. Wang, S. Pang, L. Pan, N. Xu, H. Huang, and T. Li, "Compatibilization of poly(lactic acid)/ethylene-propylene-diene rubber blends by using organic montmorillonite as a compatibilizer," Journal of Applied Polymer Science, vol. 133, no. 46, 2016. DOI: https://doi.org/10.1002/app.44192
A. Piontek, O. Vernaez, and S. Kabasci, "Compatibilization of poly (lactic acid)(PLA) and bio-based ethylene-propylene-diene-rubber (EPDM) via reactive extrusion with different coagents," Polymers, vol. 12, no. 3, p. 605, 2020. DOI: https://doi.org/10.3390/polym12030605
Y.-X. Wang, C.-C. Wang, Y. Shi, L.-Z. Liu, N. Bai, and L.-F. Song, "Effects of dynamic crosslinking on crystallization, structure and mechanical property of ethylene-octene elastomer/ EPDM blends," Polymers, vol. 14, no. 1, p. 139, 2021. DOI: https://doi.org/10.3390/polym14010139
J. Zhao, G. Wang, J. Chai, E. Chang, S. Wang, A. Zhang, and C. B. Park, "Polylactic acid/UV-crosslinked in-situ ethylene-propylene-diene terpolymer nanofibril composites with outstanding mechanical and foaming performance," Chemical Engineering Journal, vol. 447, p. 137509, 2022. DOI: https://doi.org/10.1016/j.cej.2022.137509
L. Wongwad, and S. Wacharawichanant, "Development of poly (lactic acid) ternary blends properties for plastic packaging applications by thermoforming technique," Silpakorn University, 2022.
S. Beluns, S. Gaidukovs, O. Platnieks, G. Gaidukova, I. Mierina, L. Grase, O. Starkova, P. Brazdausks, and V. K. Thakur, "From wood and hemp biomass wastes to sustainable nanocellulose foams," Industrial Crops and Products, vol. 170, p. 113780, 2021. DOI: https://doi.org/10.1016/j.indcrop.2021.113780
L. Lawson, L. M. Degenstein, B. Bates, W. Chute, D. King, and P. I. Dolez, "Cellulose textiles from hemp biomass: Opportunities and challenges," Sustainability, vol. 14, no. 22, p. 15337, 2022. DOI: https://doi.org/10.3390/su142215337
R. Sausserde, and A. Adamovics, "Industrial hemp for biomass production," Journal of Agricultural Engineering, vol. 44, no. s2, 2013. DOI: https://doi.org/10.4081/jae.2013.365
J. Zhao, Y. Xu, W. Wang, J. Griffin, K. Roozeboom, and D. Wang, "Bioconversion of industrial hemp biomass for bioethanol production: A review," Fuel, vol. 281, p. 118725, 2020. DOI: https://doi.org/10.1016/j.fuel.2020.118725
J. W. Dunlop, and P. Fratzl, "Biological composites," Annual Review of Materials Research, vol. 40, pp. 1-24, 2010. DOI: https://doi.org/10.1146/annurev-matsci-070909-104421
B. E. Arteaga-Ballesteros, A. Guevara-Morales, E. S. Martín-Martínez, U. Figueroa-López, and H. Vieyra, "Composite of polylactic acid and microcellulose from kombucha membranes," e-Polymers, vol. 21, no. 1, pp. 015-026, 2020. DOI: https://doi.org/10.1515/epoly-2021-0001
A. K. Mohapatra, S. Mohanty, and S. K. Nayak, "Properties and characterization of biodegradable poly (lactic acid)(PLA)/poly (ethylene glycol)(PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability," Journal of Thermoplastic Composite Materials, vol. 29, no. 4, pp. 443-463, 2016. DOI: https://doi.org/10.1177/0892705713518812
X. Yang, L. Li, W. Zhao, M. Wang, W. Yang, Y. Tian, R. Zheng, S. Deng, Y. Mu, and X. Zhu, "Characteristics and functional application of cellulose fibers extracted from cow dung wastes," Materials, vol. 16, no. 2, p. 648, 2023. DOI: https://doi.org/10.3390/ma16020648
B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim, "Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study," World Journal of Environmental Engineering, vol. 3, no. 4, pp. 95-110, 2015.
V. Andritsou, E. M. de Melo, E. Tsouko, D. Ladakis, S. Maragkoudaki, A. A. Koutinas, and A. Matharu, "Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources," ACS omega, vol. 3, no. 8, pp. 10365-10373, 2018. DOI: https://doi.org/10.1021/acsomega.8b01315
M. Ibrahim, O. Osman, and A. A. Mahmoud, "Spectroscopic analyses of cellulose and chitosan: FTIR and modeling approach," Journal of Computational and Theoretical Nanoscience, vol. 8, no. 1, pp. 117-123, 2011. DOI: https://doi.org/10.1166/jctn.2011.1668
R. Javier-Astete, J. Jimenez-Davalos, and G. Zolla, "Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam," PLoS One, vol. 16, no. 10, p. e0256559, 2021. DOI: https://doi.org/10.1371/journal.pone.0256559
H. K. Lim, H. Y. Song, J. H. Ko, S. A. Lee, K.-I. Lee, and I. T. Hwang, "An alternative path for the preparation of triacetyl-cellulose from unrefined biomass," Advances in Chemical Engineering and Science, vol. 5, no. 1, pp. 33-42, 2014. DOI: https://doi.org/10.4236/aces.2015.51004
J. Zhang, Y. Wang, L. Zhang, R. Zhang, G. Liu, and G. Cheng, "Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD," Bioresource technology, vol. 151, pp. 402-405, 2014. DOI: https://doi.org/10.1016/j.biortech.2013.10.009
K. Piekarska, P. Sowinski, E. Piorkowska, M. M. U. Haque, and M. Pracella, "Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers," Composites Part A: Applied Science and Manufacturing, vol. 82, pp. 34-41, 2016. DOI: https://doi.org/10.1016/j.compositesa.2015.11.019
R. Liu, H. Yu, and Y. Huang, "Structure and morphology of cellulose in wheat straw," Cellulose, vol. 12, pp. 25-34, 2005. DOI: https://doi.org/10.1007/s10570-004-0955-8
P. Somnuake, P. Puttawong, and S. Wacharawichanant, "Morphology and properties of poly(lactic acid)/ethylene propylene diene monomer blends with micro-cellulose fibers from paper pulp," Advances in Science and Technology, vol. 150, pp. 3-10, 2024. DOI: https://doi.org/10.4028/p-D4crNi
R. Rotaru, M. Savin, N. Tudorachi, C. Peptu, P. Samoila, L. Sacarescu, and V. Harabagiu, "Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication," Polymer Chemistry, vol. 9, no. 7, pp. 860-868, 2018. DOI: https://doi.org/10.1039/C7PY01587A
A. Sowińska, M. Maciejewska, L. Guo, and E. Delebecq, "Task-specific ionic liquids with lactate anion applied to improve ZnO dispersibility in the ethylene-propylene-diene elastomer," Polymers, vol. 13, no. 5, p. 774, 2021. DOI: https://doi.org/10.3390/polym13050774
E. Elisabeta, M. Rapa, O. Popa, G. Mustatea, V. L. Popa, A. Mitelut, and M. E. Popa, "Polylactic acid/cellulose fibres based composites for food packaging applications," Materiale Plastice, vol. 54, no. 4, pp. 673-677, 2017. DOI: https://doi.org/10.37358/MP.17.4.4923
K. F. El-Nemr, and R. M. Mohamed, "Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation," Journal of Macromolecular Science, Part A, vol. 54, no. 10, pp. 711-719, 2017. DOI: https://doi.org/10.1080/10601325.2017.1322469
F. K. Liew, S. Hamdan, M. M. Rahman, M. Rusop, J. Lai, Md. F. Hossen, Md. and M. Rahman, "Synthesis and characterization of cellulose from green bamboo by chemical treatment with mechanical process," Journal of Chemistry, vol. 2015, no. 212158, pp. 1-6, 2015. DOI: https://doi.org/10.1155/2015/212158
R. Wittawat, R. Rittipun, and B. Nattaporn, "Development of PLA/EPDM/SiO2 blended polymer for biodegradable packaging," Journal of Applied Polymer Science, vol. 139, no. 48, p. e53239, 2022. DOI: https://doi.org/10.1002/app.53239
Z. Qiu, M. Komura, T. Ikehara, and T. Nishi, "DSC and TMDSC study of melting behaviour of poly (butylene succinate) and poly (ethylene succinate)," Polymer, vol. 44, no. 26, pp. 7781-7785, 2003. DOI: https://doi.org/10.1016/j.polymer.2003.10.045
S. Wacharawichanant, P. Sahapaibounkit, U. Saeueng, and S. Thongyai, "Mechanical and thermal properties of polyoxy-methylene nanocomposites filled with different nanofillers," Polymer-Plastics Technology and Engineering, vol. 53, no. 2, pp. 181-188, 2014. DOI: https://doi.org/10.1080/03602559.2013.843707
T. W. Shyr, H. C. Ko, and H. L. Chen, "Homocrystallization and stereocomplex crystallization behaviors of as-spun and hot-drawn poly(l-lactide)/poly(d-lactide) blended fibers during heating," Polymers (Basel), vol. 11, no. 9, 2019. DOI: https://doi.org/10.3390/polym11091502
K. F. El‐Nemr, M. A. Ali, S. N. Saleh, and A. W. M. El‐Naggar, "Mechanical properties of gamma‐irradiated styrene‐butadiene rubber/acid‐treated vermiculite clay/maleic anhydride nano-composites," Polymer Engineering & Science, vol. 59, no. 2, pp. 355-364, 2019. DOI: https://doi.org/10.1002/pen.24925
A. Gupta, N. Mulchandani, M. Shah, S. Kumar, and V. Katiyar, "Functionalized chitosan mediated stereocomplexation of poly (lactic acid): Influence on crystallization, oxygen permeability, wettability and biocompatibility behavior," Polymer, vol. 142, pp. 196-208, 2018. DOI: https://doi.org/10.1016/j.polymer.2017.12.064
S. Van Nguyen, and B. K. Lee, "Polyvinyl alcohol/cellulose nanocrystals/alkyl ketene dimer nanocomposite as a novel biodegradable food packing material," International Journal of Biological Macromolecules, vol. 207, pp. 31-39, 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.184
S. Saeidlou, M. A. Huneault, H. Li, and C. B. Park, "Poly(lactic acid) crystallization," Progress in Polymer Science, vol. 37, no. 12, pp. 1657-1677, 2012. DOI: https://doi.org/10.1016/j.progpolymsci.2012.07.005
H. Urayama, T. Kanamori, and Y. Kimura, "Microstructure and thermomechanical properties of glassy polylactides with different optical purity of the lactate units," Macromolecular Materials and Engineering, vol. 286, no. 11, pp. 705-713, 2001. DOI: https://doi.org/10.1002/1439-2054(20011101)286:11<705::AID-MAME705>3.0.CO;2-Q
ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
การอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารโลหะ, วัสดุ และแร่

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.




