Effects of thickness on the performance of SnO\(_{2}\) gas sensors using low-temperature co-fired ceramic
DOI:
https://doi.org/10.55713/jmmm.v35i1.2063Keywords:
SnO2 nanoparticles, thickness, Low-temperature co-fired ceramic (LTCC), Gas sensorsAbstract
This study develops SnO2-based gas sensors integrated with a low-temperature co-fired ceramic (LTCC) micro hotplate for ethanol detection. SnO2 nanoparticles were synthesized using a simple precipitation method, and sensing layers with varying thicknesses around 0.24 µm, 0.71 µm, and 1.20 µm were applied to evaluate their influence on performance. The results show that the optimal configuration is a 0.71 µm layer, offering high sensitivity, fast response, and efficient recovery. Operating at a low voltage of 3.2 V, the sensors exhibit low power consumption, suitable for portable and battery-operated applications. The gas-sensing mechanism relies on changes in resistance due to interactions between ethanol molecules and oxygen species adsorbed on the SnO2 surface, with the optimal sensor showing superior selectivity for ethanol (C₂H₅OH) over other gases, including hydrogen sulfide (H2S), ammonia (NH3), acetone (C3H6O), and nitric oxide (NO). The structural and electrical properties of the SnO2 layers, combined with the efficiency of the LTCC micro hotplate platform, contribute to stable sensing performance. This research highlights the importance of thickness optimization to balance sensitivity and response. The proposed sensor offers a low-cost, energy-efficient solution for ethanol monitoring, with potential enhancements through material doping, multi-gas detection, and IoT integration.
Downloads
References
R. Kumar, A. Kumar, R. Singh, R. Kashyap, R. Kumar, D. Kumar, S. K. Sharma, and M. Kumar, "Room temperature ammonia gas sensor using Meta Toluic acid functionalized graphene oxide," Materials Chemistry and Physics, vol. 240, p. 121922, 2020. DOI: https://doi.org/10.1016/j.matchemphys.2019.121922
M. Nami, M. Taheri, I. A. Deen, M. Packirisamy, and M. J. Deen, "Nanomaterials in chemiresistive and potentiometric gas sensors for intelligent food packaging," TrAC Trends in Analytical Chemistry, p. 117664, 2024. DOI: https://doi.org/10.1016/j.trac.2024.117664
S. Dhall, B. Mehta, A. Tyagi, and K. Sood, "A review on environmental gas sensors: Materials and technologies," Sensors International, vol. 2, p. 100116, 2021. DOI: https://doi.org/10.1016/j.sintl.2021.100116
J. Luo, T. Dziubla, and R. Eitel, "A low temperature co-fired ceramic based microfluidic Clark-type oxygen sensor for real-time oxygen sensing," Sensors and Actuators B: Chemical, vol. 240, pp. 392-397, 2017. DOI: https://doi.org/10.1016/j.snb.2016.08.180
C. W. Ji, J. D. Mun, C. B. Yoon, and H. C. Lee, "Low temperature co-fired ceramic-based and heater-embedded toxic gas sensors with nanostructured SnO2 thick films," Journal of Nanoscience and Nanotechnology, vol. 19, no. 8, pp. 5227-5232, 2019. DOI: https://doi.org/10.1166/jnn.2019.16831
L. Kulhari, K. Ray, N. Suri, and P. Khanna, "Detection and characterization of CO gas using LTCC micro-hotplates," Sadhana, vol. 45, pp. 1-6, 2020. DOI: https://doi.org/10.1007/s12046-020-1316-5
Y. Shen, W. Wang, A. Fan, D. Wei, W. Liu, C. Han, Y. Shen, D. Meng, and X. San, "Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies," International journal of hydrogen energy, vol. 40, no. 45, pp. 15773-15779, 2015. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.077
A. K. Mauraya, P. Singh, S. Muthiah, S. S. Kushvaha, and S. K. Muthusamy, "Effect of post-oxidation processes and thickness of SnO2 films prepared by vacuum evaporation on CO gas sensing characteristics," Ceramics International, vol. 47, no. 9, pp. 13015-13022, 2021. DOI: https://doi.org/10.1016/j.ceramint.2021.01.165
W. Yuan, K. Yang, H. Peng, F. Li, and F. Yin, "A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance," Journal of Materials Chemistry A, vol. 6, no. 37, pp. 18116-18124, 2018. DOI: https://doi.org/10.1039/C8TA06928J
S. Ying, Y. Wang, Z, Wu, M. Huang, L. Dong, J. Zhao, and C. Peng, "Highly-sensitive NO2 gas sensors based on three-dimensional nanotube graphene and ZnO nanospheres nano-composite at room temperature," Applied Surface Science, vol. 566, p. 150720, 2021. DOI: https://doi.org/10.1016/j.apsusc.2021.150720
M. A. Franco, P. P. Conti, R. S. Andre, and D. S. Correa, "A review on chemiresistive ZnO gas sensors," Sensors and Actuators Reports, vol. 4, p. 100100, 2022. DOI: https://doi.org/10.1016/j.snr.2022.100100
V. Kumar, A. Singh, B. C. Yadav, H. K. Singh, D. P. Singh, S. K. Singh, and N. Chaurasiya, "Environment-sensitive and fast room temperature CO2 gas sensor based on ZnO, NiO and Ni-ZnO nanocomposite materials," Environmental Functional Materials, vol. 2, no. 2, pp. 167-177, 2023. DOI: https://doi.org/10.1016/j.efmat.2023.12.002
A. Rydosz, W. Maziarz, T. Pisarkiewicz, H. B. de Torres, and J. Mueller, "Thermal and electrical investigation on LTCC gas sensor substrates," International Journal of Information and Electronics Engineering, vol. 6, no. 3, pp. 143-146, 2016. DOI: https://doi.org/10.18178/IJIEE.2016.6.3.612
N. Ababii, M. Hoppe, S. Shree, A. Vahl, M. Ulfa, T. Pauporte, B. Viana, V. Cretu, N. Magariu, V. Postica, V. Sontea, M.-I. Terasa, O. Polonskyi, F. Faupel, R. Adelung, and O. Luopan, "Effect of noble metal functionalization and film thickness on sensing properties of sprayed TiO2 ultra-thin films," Sensors and Actuators A: Physical, vol. 293, pp. 242-258, 2019. DOI: https://doi.org/10.1016/j.sna.2019.04.017
Z. Li, A. A. Haidry, T. Plecenik, M. Vidis, B. Grancic, T. Roch, M. Gregor, P. Durina, Z. Yao, and A. Plecenik, "Influence of nanoscale TiO2 film thickness on gas sensing properties of capacitor-like Pt/TiO2/Pt sensing structure," Applied Surface Science, vol. 499, p. 143909, 2020. DOI: https://doi.org/10.1016/j.apsusc.2019.143909
R. Paulraj, P. Ramasamy, and N. Vijayan, "One step synthesis of tin oxide nanomaterials and their sintering effect in dye degrdation," Optik, vol. 135, pp. 434-445, 2017. DOI: https://doi.org/10.1016/j.ijleo.2017.01.068
N. Horti, M. Kamatagi, N. Patil, M. Wari, and S. Inamdar, "Photoluminescence properties of SnO2 nanoparticles: effect of solvents," Optik, vol. 169, pp. 314-320, 2018. DOI: https://doi.org/10.1016/j.ijleo.2018.05.085
K. Jaruwongrungsee, "Gas sensing device, its fabrication and signal analysis process thereof," Thailand Patent 2301005878, 2023.
Y. K. Gautam, K. Sharma, S. Tyagi, A. K. Ambedkar, M. Chaudhary, and B. Pal Singh, "Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges," Royal Society open science, vol. 8, no. 3, p. 201324, 2021. DOI: https://doi.org/10.1098/rsos.201324
A. N. Kawade, P. K. Bhujbal, A. T. Supekar, H. M. Pathan, and K. M. Sonawane, "Eosin-Y sensitized tin oxide (SnO2): Fabrication and its analysis," Optik, vol. 216, p. 164968, 2020. DOI: https://doi.org/10.1016/j.ijleo.2020.164968
Y. Masuda, "Recent advances in SnO2 nanostructure based gas sensors," Sensors and Actuators B: Chemical, vol. 364, p. 131876, 2022. DOI: https://doi.org/10.1016/j.snb.2022.131876
M. Honarmand, M. Golmohammadi, and A. Naeimi, "Bio-synthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photo-catalytic degradation of organic dyes," Advanced Powder Technology, vol. 30, no. 8, pp. 1551-1557, 2019. DOI: https://doi.org/10.1016/j.apt.2019.04.033
G. Jozanikohan and M. N. Abarghooei, "The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir," Journal of Petroleum Exploration and Production Technology, vol. 12, no. 8, pp. 2093-2106, 2022. DOI: https://doi.org/10.1007/s13202-021-01449-y
P. Luque, H. E. Garrafa-Galvez, O. Nava, A. Olivas, M. E. Martinez-Rosas, A. R. Vilchis-Nestor, A. Villegas-Fuentes, and M. J. Chinchillas-Chinchillas,"Efficient sunlight and UV photo-catalytic degradation of methyl orange, methylene blue and Rhodamine B, using Citrus×paradisi synthesized SnO2 semi-conductor nanoparticles," Ceramics International, vol. 47, no. 17, pp. 23861-23874, 2021. DOI: https://doi.org/10.1016/j.ceramint.2021.05.094
J. Huang, L. Wang, C. Gu, Z. Wang, Y. Sun, and J.-J. Shim, "Preparation of porous SnO2 microcubes and their enhanced gas-sensing property," Sensors and Actuators B: Chemical, vol. 207, pp. 782-790, 2015. DOI: https://doi.org/10.1016/j.snb.2014.10.128
Z. Song, S. Xu, M. Li, W. Zhang, H. Yu, Y. Wang, and H. Liu, "Solution-processed SnO2 nanowires for sensitive and fast-response H2S detection," Thin Solid Films, vol. 618, pp. 232-237, 2016. DOI: https://doi.org/10.1016/j.tsf.2016.08.020
I. Khan, Z. H. Yamani, and A. Qurashi, "Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties," Ultrasonics sonochemistry, vol. 34, pp. 484-490, 2017. DOI: https://doi.org/10.1016/j.ultsonch.2016.06.025
M. A. Han, H.-J. Kim, H. C. Lee, J.-S. Park, and H.-N. Lee, "Effects of porosity and particle size on the gas sensing properties of SnO2 films," Applied Surface Science, vol. 481, pp. 133-137, 2019. DOI: https://doi.org/10.1016/j.apsusc.2019.03.043
Y. Sun, J. Guo, J. Qi, B. Liu, and T. Yu, "Comparisons of SnO2 gas sensor degradation under elevated storage and working conditions," Microelectronics Reliability, vol. 114, p. 113808, 2020. DOI: https://doi.org/10.1016/j.microrel.2020.113808
Z. Cai, E. Goo, and S. Park, "Synthesis of tin dioxide (SnO2) hollow nanospheres and its ethanol-sensing performance augmented by gold nanoparticle decoration," Journal of Alloys and Compounds, vol. 883, p. 160868, 2021. DOI: https://doi.org/10.1016/j.jallcom.2021.160868
X. Ma, H. Song, and C. Guan, "Enhanced ethanol sensing properties of ZnO-doped porous SnO2 hollow nanospheres," Sensors and Actuators B: Chemical, vol. 188, pp. 193-199, 2013. DOI: https://doi.org/10.1016/j.snb.2013.06.099
Y. Zhao, J. Liu, Q. Liu, Y. Sun, D. Song, W. Yang, J. Wang, and L. Liu, "One-step synthesis of SnO2 hollow microspheres and its gas sensing properties," Materials Letters, vol. 136, pp. 286-288, 2014. DOI: https://doi.org/10.1016/j.matlet.2014.08.073
C. A. Zito, T. M. Perfecto, and D. P. Volanti, "Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere," Sensors and Actuators B: Chemical, vol. 244, pp. 466-474, 2017. DOI: https://doi.org/10.1016/j.snb.2017.01.015
B. Wang, L. Sun, and Y. Wang, "Template-free synthesis of nano-sheets-assembled SnO2 hollow spheres for enhanced ethanol gas sensing," Materials Letters, vol. 218, pp. 290-294, 2018. DOI: https://doi.org/10.1016/j.matlet.2018.02.003
Z. Yuan, K. Zuo, F. Meng, Z. Ma, W. Xu, and H. Dong, "Microscale analysis and gas sensing characteristics based on SnO2 hollow spheres," Microelectronic Engineering, vol. 231, p. 111372, 2020. DOI: https://doi.org/10.1016/j.mee.2020.111372
Y. Zhao, Y. Liu, Y. Ma, Y. Li, J. Zhang, X. Ren, C. Li, J. Zhao, J. Zhu, and H. Zhao, "Hollow pentagonal-cone-structured SnO2 architectures assembled with nanorod arrays for low-temperature ethanol sensing," ACS Applied Nano Materials, vol. 3, no. 8, pp. 7720-7731, 2020.. DOI: https://doi.org/10.1021/acsanm.0c01307

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.